Химическая термодинамика. Энергия Гиббса. Расчеты энтропии и энергии гиббса

Энтропия

При выяснении природы самопроизвольного протекания процессов /без воздействия из вне/ было установлено, что самопроизвольные реакции сопровождаются экзотермическим эффектом (ΔΗ < 0), и чем он больше, тем выше химическое сродство реагентов друг к другу. Однако для определения самопроизвольного протекания процесса недостаточно найти энтальпийный фактор.

Поэтому другим фактором определения самопроизвольного протекания процессов является термодинамическая функция называемая энтропией системы (S). Энтропия является мерой неупорядоченности состояния системы. Чем меньше упорядоченность системы, тем выше энтропия системы. Единицей измерения энтропии является Дж/моль·°К. Значения энтропии различных веществ в стандартных условиях (S°) приведены в таблицах термодинамических величин (см. приложение, табл.3). В ходе химической реакции энтропия системы изменяется. Это изменение называется энтропией реакции. Все процессы, которые протекают с уменьшением порядка в расположении частиц системы (растворение кристаллов, плавление и др.) сопровождаются увеличением энтропии /ΔS > 0/. И наоборот (кристаллизация, конденсация и др.) сопровождаются уменьшением энтропии /ΔS < 0/.

Энтропию реакции рассчитывают по следствию закона Гесса:

ΔS р = Σ (n · S) прод. – Σ (n · S) исх.

N 2/г/ + О 2/г/ = 2NО /г/

Число молей,(n): 1 1 2

S° 298 (из таблицы): 200 205 211

ΔS° р = 2 · (211) - = 7 Дж/ моль·К.

Так как ΔS° р >0, то данный процесс идет с уменьшением упорядоченности системы.

В отличие от других термодинамических функций, можно определить не только изменения, но и абсолютное значение энтропии. Согласно третьему закону термодинамики «при абсолютном нуле энтропия идеального кристалла равна нулю».

Величина энтропии возрастает с ростом температуры. Неупорядоченность увеличивается при переходе вещества из твёрдого состояния в жидкое, особенно резко возрастает энтропия при переходе из жидкого в газообразное состояние.

Например: ∆S 0 298 Н 2 О тв = 39,3 Дж/моль·°К..,

∆S 0 298 Н 2 О ж = 70,0 Дж/моль·°К, S 0 298 Н 2 О газ = 188,9 Дж/моль·°К.

∆S 0 298 Н 2 О тв < ∆S 0 298 Н 2 О ж < S 0 298 Н 2 О газ

Согласно второму закону термодинамики “в замкнутой /изолированной/ системе самопроизвольно идут процессы, приводящие к росту энтропии, либо без изменения энтропии /ΔS ≥ 0/.

Для процессов протекающих в изобарно-изотермических условиях движущей силой процесса является либо стремление системы перейти в состояние с наименьшей энтальпией /энтальпийный фактор/, либо увеличение энтропии системы /энтропийный фактор/.



Наиболее устойчивое состояние системы соответствует равенству энтальпийного и энтропийного факторов:

ΔΗ = Т·ΔS

Термодинамическая функция, связывающая энтальпию и энтропию системы и показывающая насколько система в данном состоянии отклонилась от равновесного состояния называется энергией Гиббса. Абсолютное значение энергии Гиббса системы определить невозможно и рассчитывают изменение энергии Гиббса /ΔG/. Отсюда следует:

ΔG = ΔН – Т ·ΔS

Стандартные значения изменений энергии Гиббса (ΔG° 298) приведены в таблицах термодинамических величин (см. приложение, табл.3). Единицей измерения энергии Гиббса является Дж/моль. Значение энергии Гиббса является критерием самопроизвольности протекания процессов:

при ΔG < 0 /реально меньше –2/ процесс идет самопроизвольно;

при ΔG = 0 /реально от 0 до –2/ состояние равновесия;

при ΔG > 0 процесс самопроизвольно не идет.

Энергией Гиббса образования вещества (по аналогии с энтальпией) называют энергию Гиббса реакции образования одного моля этого вещества из простых веществ. Энергия Гиббса образования простых веществ принимается равной нулю, если их агрегатное состояние и модификации при стандартных условиях устойчивы.

Энергия Гиббса реакции в стандартных условиях может быть рассчитана по следствию закона Гесса (по аналогии с энтальпией):

ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх.

СО 2/г/ + С /графит/ = 2СО /г/

Число молей,(n) 1 1 2

ΔG° 298 (из таблицы) -394 0 -137

ΔG° Р = 2 · (-137) - = +120 кДж.

Так как ΔG° Р >0, то в денных условиях процесс самопроизвольно не идет.

Чем больше отрицательная величина ΔG, тем больше реакционная способность веществ (химическое сродство).

Однако стандартная энергия Гиббса химической реакции не может быть критерием направления протекания реакции в условиях, отличных от стандартных.

Определяя ΔН° 298 и ΔS° 298 находим:

а) При 298°К по формуле ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх. = +5,0 кДж, т.е. равновесие смещено в сторону образования N 2 О 4 , т.к. ΔG > 0, процесс самопроизвольно не идет;

б) При 373°К рассчитываем значения ΔН и ΔS для реакции в стандартных условиях (ΔΗ р = Σ(n ΔΗ) прод. – Σ(n ΔΗ) исх. ΔS р = Σ (n · S) прод. – Σ (n · S) исх.), а затем с учетом температуры подставляем значения ΔН и ΔS в уравнение ΔG = ΔН – Т ·ΔS:

ΔG° 373 = +57 – 373 · 0,176 = -9,0 кДж, т.е. равновесие смещено в сторону образования NО 2 , т.к. ΔG < 0, при температуре 373°К процесс начинает протекать самопроизвольно.

Это величина, которая показывает уровень изменения энергии в процессе химической реакции, и в результате дающая ответ на вопрос о возможности протекания химических реакций. Такой потенциал можно принимать за полную химическую энергию системы (жидкости, кристалла и т. д.). Свободная энергия Гиббса широко применяется в химии и термодинамике.

Самопроизвольное протекание определено следующими факторами: энтальпийным и энтропийным. Первый связан с уменьшением энтальпии системы, а второй обусловлен увеличением уровня беспорядка внутри системы вследствие повышения ее энтропии. Разность описанных термодинамических факторов и является функцией состояний системы, которая известна как изобарно-изотермический потенциал, или свободная энергия Гиббса (G, кДж).

Самопроизвольность протекания процесса в системе открытого и закрытого типа описывается специальным критерием, получившим название потенциал Гиббса. По сути, он представляет собой функцию состояния. Д. У. Гиббс, когда работал с термодинамическими системами, вывел эту функцию через энтальпию и энтропию. Свободная энергия Гиббса позволяет предсказывать направление протекания самопроизвольного биологического процесса, а также оценивать его теоретически достижимый коэффициент полезного действия.

Применительно ко второму выводы Гиббса можно сформулировать следующим образом: при постоянных значениях давления и температуры без воздействия извне система будет поддерживать уровень самопроизвольного протекания только для процессов, вследствие которых произойдет уменьшение значения потенциала Гиббса до уровня, который наступит по достижении ним установившегося минимума. Итак, системы определяет неизменность свободной энергии. Поэтому потенциал Гиббса представляет собой свободную энтальпию в изобарно-изотермической системе. Поясним, почему указывается именно минимум. Это объясняется важнейшим постулатом равновесия в термодинамике, а именно: данное состояние при условии постоянного давления и температуры означает, что для следующего изменения требуется увеличивать уровень энергии, а это возможно только при изменении внешних факторов.

А что же понимают под свободной энергией? Под этим термином подразумевают процесс получения неограниченного количества энергии без или с незначительными затратами энергии. То есть энергия, полученная от гидроэлектростанции, ветрогенератора, - это свободная энергия, потому как мы не тратили энергию на то, чтобы солнечные лучи падали на землю, вода в реке текла или дул ветер. Подобных источников вокруг нас существует огромное множество, большинство из них еще неизвестны науке. Вот на них время от времени и «натыкаются» разные изобретатели-экспериментаторы. Одним из таких изобретений стала свободная энергия Тесла. Как считал ученый, энергия, которую он получал, брала свое начало из эфира (вакуума). Жаль, что его изобретение так и не было доведено до логического конца. Однако подобные открытия продолжают совершаться, этот процесс не остановить. На сегодняшний день существует множество патентов на изобретения, основа которых - свободная энергия. Схема одного из таких устройств приведена выше.

Расчет ΔG для химических процессов можно осуществить двумя способами. В первом способе используется соотношение (4.3)

Рассмотрим в качестве примера расчет ΔG 0 для реакции

Символ "°" , как и прежде, указывает на стандартное состояние всех участников реакции.

Известно, что стандартная энтальпия образования воды равна

Используя табличные значения стандартных энтропий участников реакции, выраженных в энтропийных единицах, э.е. (Дж/моль К): =126 э.е.;

вычислим AS 0 , используя уравнение (3.6):

Таким образом, найдем, что

Полученная отрицательная величина говорит о том, что в стандартных условиях эта реакция должна идти слева направо.

Во втором способе расчета ΔG химических реакций используют то, что эту величину можно рассчитать по известным величинам ΔG других реакций, комбинация уравнений которых дает интересующее нас уравнение реакции (аналогично расчету тепловых эффектов реакции). При этом мы исходим из свойств этой функции как функции состояния: считаем ΔG независимым от пути проведения процесса.

Наиболее удобно использовать для этих целей AG реакций образования (ΔG o 6 p). С реакциями образования мы знакомились, когда изучали первое следствие из закона Гесса. Напоминаем, что реакциями образования в термодинамике считаются такие реакции, в которых 1 моль вещества в стандартном состоянии при данной температуре образуются из простых веществ , взятых в их стандартном состоянии при той же температуре. Реакции образования часто бывают гипотетическими, т.е. не идущими реально, а лишь соответствующими приведенному выше определению. В термодинамических таблицах приводятся изменения энергии Гиббса для реакций образования при стандартных условиях ( ΔG^)- Понятно, что ΔG° 6 p простых веществ равно нулю.

Используя ΔG р, можно рассчитать стандартное изменение энергии Гиббса ( ΔG 0) любой химической реакции. Эта величина равна разности стандартных энергий Гиббса для реакций образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов:

(4.4)

В качестве примера рассчитаем (Δ G°) важного биохимического процесса - реакции окисления глюкозы:

В биологических системах такое большое количество энергии освобождается нe сразу, а небольшими порциями в сложном ряду химических превращений.

Для расчета изменения энергий Гиббса реакций при температурах, отличающихся от стандартных ( ΔG T), надо знать величины теплоемкостей участников реакции в интервале температур от 298 К до Т. Расчетные соотношения получают следующим образом:

Так как в соответствии с уравнениями (2.18а) и (3.7)

Аналогичным образом можно получить выражение зависимости ΔF от температуры:

(4.6)

Для практического использования функций ΔF и ΔG полезно знать ответы на следующие вопросы.

1. Каковы различия между ΔF и ΔG химических реакций при Т = const?

Из определений ΔF и ΔG следует, что

В реакциях в конденсированных средах (твердых и жидких) обычно изменением объема можно пренебречь ( ΔV = 0). Тогда

Если в реакциях участвуют газы и можно их считать идеальными , то

При ΔV = 0, т.е. когда реакция идет без изменения числа молей,

2. Какие выводы можно сделать, получив значения термодинамических критериев возможности самопроизвольного протекания процессов?

Если термодинамика дает отрицательный ответ на вопрос о возможности самопроизвольного протекания процесса (ΔF > 0 или ΔG > 0), это означает, что без внешнего подвода энергии процесс невозможен. Процесс может самопроизвольно протекать только в обратном направлении.

Если термодинамика дает положительный ответ ( ΔF< 0 или ΔG < 0), это говорит только о возможности протекания процесса. Но часто в реальных условиях такой процесс не идет. Например, для реакции образования С0 2 ΔG 0 = -395,9 кДж/моль. Но графит с кислородом при 298 К и р = 1 атм не реагирует. Чтобы процесс шел, необходимо создать условия для увеличения скорости (запал, катализаторы и т.д.).

3. Может ли идти процесс, если ΔF > 0 или ΔG > 0?

Может, но не самопроизвольно. Для его проведения надо затратить энергию. Пример - процесс фотосинтеза, идущий в растениях под воздействием солнечной энергии. Другой пример - протекание реакций, характеризующихся ΔG > 0, при сопряжении их с реакциями, для которых AG < 0. При этом сумма величин ΔG для всех стадий процесса, включая сопряженные реакции, отрицательна. Например, для синтеза сахарозы из глюкозы и фруктозы:

ΔG 0 = 21 кДж/моль и, следовательно, прямая реакция самопроизвольно протекать не может. Вместе с тем, известно, что в организмах этот процесс происходит. Сопряженной реакцией в этом случае является гидролиз аде- позинтрифосфата (АТФ) с образованием АДФ и фосфорной кислоты (Ф):

Сопряжение осуществляется путем образования в качестве промежуточного соединения глюкозо-1-фосфата. Реакция идет в две стадии:

1- я стадия: АТФ + глюкоза -> глюкозо-1-фосфат + АДФ;

ΔG 0 = -29,4 кДж/моль.

2- я стадия: глюкозо-1 -фосфат + фруктоза -> сахароза + Ф; AG 0 = 0.

Так как ΔG является величиной аддитивной, суммарный процесс можно записать в виде суммы двух стадий:

АТФ + глюкоза + фруктоза = сахароза + АДФ + Ф; ΔG 0 =

29,4 кДж/моль.

Такое сопряжение типично для многих биологических реакций.

В живых организмах освобожденная при окислении глюкозы энергия не сразу расходуется в различных процессах жизнедеятельности, а запасаeтся впрок в различных соединениях, богатых энергией, таких, как эфиры фосфорной кислоты (АТФ, ЛДФ, креатин- и аргининфосфаты и др.).

4. В каких случаях АН (или ΔU)

В общем случае критерием самопроизвольности является величина ΔG (или ΔF) процесса.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при ΔS = 0 (в изоэн- тронийных условиях) ΔG = ΔН (или ΔF= ΔU). В этом случае ΔН (или ΔU) является критерием самопроизвольности процесса. При этом самопроизвольно идут экзотермические реакции ( ΔН < 0, ΔU < 0).

5. В каких случаях ΔS является критерием самопроизвольности процесса?

Рассуждения аналогичны приведенным в п. 4.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при отсутствии тепловых эффектов реакций (АН = 0, ΔU = 0) ΔG = -TΔS (или ΔF= -TΔS). В этом случае ΔS является критерием самопроизвольности процесса. При этом самопроизвольно идут процессы с ростом энтропии (ΔS > 0), т.е. процессы, связанные с разложением веществ, их деструкцией, дезагрегацией.

6. Каковы условия самопроизвольного протекания экзотермических реакций ( ΔН < 0, ΔU < 0)?

Выберем для определенности изобарные условия протекания экзотермических реакций: ΔН < G = АН - TΔS.

Рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔG = ΔН - TΔS
  • б) если ΔS = 0, то ΔG = ΔН - TΔS
  • в) если ΔS G = ΔΔН - TΔS TΔS :
    • |ΔH|>|TΔS|. При этом ΔG 0. Процесс идет самопроизвольно,
    • | ΔH | = |TΔS|. При этом ΔG = 0. Состояние равновесия,
    • | ΔH |G > 0. Процесс не идет слева направо.

Таким образом, экзотермические реакции термодинамически запрещены только при значительном уменьшении энтропии, например, в некоторых процессах структурирования, образования дополнительных связей и т.д.

Еще один важный вывод из этих рассуждений: в изолированных системах самопроизвольно могут идти процессы с уменьшением энтропии , если они сопровождаются значительным тепловым эффектом. Это особенно важно для понимания возможности самопроизвольного усложнения систем, например, в процессе роста живых организмов. В этом случае источником энергии могут являться все те же богатые энергией эфиры фосфорной кислоты (АТФ, АДФ, креатин- и аргининфосфаты и др.). Кроме того, при рассмотрении реальных систем следует иметь в виду, что они практически не бывают изолированными и имеется возможность подачи энергии извне.

7. Каковы условия самопроизвольного протекания эндотермических реакций ( ΔН > 0)?

Выберем для определенности изобарные условия протекания эндотермических реакций: ΔH> 0. При этом возможность самопроизвольного протекания реакции определяется знаком ΔG = ΔН - TΔS.

Как и в предыдущем случае, рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔС = ΔН - TΔS может иметь различные знаки в зависимости от абсолютной величины TΔS :
    • ΔН При этом ΔС
    • ΔН = TΔS. При этом ΔG = 0. Состояние равновесия,
    • ΔН > TΔS. При этом ΔС >
  • б) если ΔS = 0, то АС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо;
  • в) если ΔS 0, то ΔС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо.

Таким образом, эндотермические реакции идут самопроизвольно только при значительном увеличении энтропии в реакции, например, в процессах разложения, деструкции, дезагрегации.

  • 8. Как влияет повышение температуры на ΔU, ΔН, ΔS, ΔG и aлхимических реакций:
    • а) зависимость ΔU от температуры выражается уравнением Кирхгоффа (2.21а):

U растет при Δc v > 0 и падает при Δc v < 0. При ΔСу= 0 величина ΔU не зависит от температуры;

б) зависимость ΔН от температуры выражается уравнением Кирхгоффа (2.20а):

С ростом температуры величина ΔН растет при Δ с р > 0 и надает при Δс р < 0. При Δс р = 0 величина ΔН не зависит от температуры;

в) зависимость ΔS от температуры выражается уравнением (3.8а):

С ростом температуры ΔS растет при Δс р > 0 и падает при Δс /; < 0. При Δс р =0 величина ΔS не зависит от температуры;

г) зависимость ΔF от температуры выражается уравнением (4.6)

Часто можно пренебречь двумя последними слагаемыми из-за их незначительной величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔF растет при ΔS < 0 и надает при ΔS > 0. При ΔS = 0 величина ΔF нe зависит от температуры;

д) зависимость ΔG от температуры выражается уравнением (4.5а):

Часто можно пренебречь двумя последними слагаемыми из-за их меньшей величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔG растет при ΔS < 0 и падает при ΔS > 0. При ΔS = 0 величина ΔG не зависит от температуры.

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (9)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (10)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG >

· если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DG обр. , измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG 0 обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG 0 обр.298 веществ приводятся в справочниках.



Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG 0 298 = S(n i . DG i 0 298) пр. - S(n i . D G i 0 298) исх. . (11)

Свободная энергия Гельмгольца

Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F):

DF = DU – TDS.

Знак изменения свободной энергии Гельмгольца DF и ее величина при V = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гельмгольца, т.е. D F < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. D F > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

· если D F = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при V=const идут с уменьшением свободной энергии Гельмгольца. Этот вывод справедлив как для изолированных, так и для открытых систем.


ХИМИЧЕСКАЯ КИНЕТИКА

Основные понятия химической кинетики

Химическая кинетика – раздел химии, изучающий скорости и механизмы химических реакций.

Различают гомогенные и гетерогенные химические реакции:

· гомогенные реакции протекают в однородной среде во всем объеме системы (это реакции в растворах, в газовой фазе);

· гетерогенные реакции протекают в неоднородной среде, на границе раздела фаз (горение твердого или жидкого вещества).

Основным понятием химической кинетики является понятие о скорости химической реакции. Под скоростью химической реакции понимается число элементарных актов взаимодействия в единицу времени в единице объема (если реакция гомогенная) или число элементарных актов взаимодействия в единицу времени на единицу поверхности раздела фаз (если реакция гетерогенная).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных веществ или конечных продуктов реакции в единицу времени и выражают: для гомогенных реакций – моль/л·с (моль/м 3 ·с и т.д.), для гетерогенных – моль/см 2 ·с (моль/м 2 ·с).



Различают среднюю и истинную (мгновенную) скорость реакции. Из зависимостей, представленных на рис. 6.1, следует: при химическом взаимодействии концентрация каждого из исходных веществ (кривая 1) уменьшается во времени (С 2 <С 1 , DС<0), а концентрация каждого из продуктов реакции (кривая 2) возрастает (С` 2 >С` 1 , DС>0). Следовательно, среднюю скорость (V ср) в интервале времени t 1 ÷ t 2 можно выразить следующим образом:

V ср =± (С 2 – С 1)/(t 2 - t 1) = ± DС/Dt. (1)

Средняя скорость является грубым приближением, т.к. в интервале времени t 1 ÷ t 2 она не остается постоянной. Истинная или мгновенная скорость в момент времени t (V) определяется следующим образом:

V = lim (± DС/D t) = ± dС/dt = ± С" t = tg a, (2)

т.е. мгновенная скорость химической реакции равна первой производной от концентрации одного из веществ по времени и определяется как tg угла наклона касательной к кривой С А = f (t) в точке, соответствующей данному моменту времени t: dС/dt = tga.

Скорость химической реакции зависит от различных факторов:

Природы реагирующих веществ;

Их концентрации;

Температуры протекания процесса;

Присутствия катализатора.

Рассмотрим более подробно влияние каждого из перечисленных факторов на скорость химической реакции.

S – функция состояния системы, называемая энтропией. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

S = S (прод .) – S (исх .) ,

где S (прод.) и S (исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы V в результате процесса. Знак V определяется по изменению количества вещества газообразных реагентов n г. Так, для реакции CaCO 3 (к) = CaO(к) + CO 2 (г):

(n г = 1) V > 0, значит, S > 0.

Для реакции С(графит) + 2Н 2 (г) = СН 4 (г)

(D n г = -1) V 0, следовательно и S 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования S о f,298 (или S о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

G – функция состояния системы, называемая энергией Гиббса . Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение G в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса
(G 0). При достижении равновесия в системе G = 0.

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования G о f,298 (или G о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, G о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнениеG о Т = Н о Т - Т S о Т. При низких температурах ТS о Т мало. Поэтому знак G о Т определяется в основном значением Н о Т (энтальпийный фактор). При высоких температурах Т S о Т – большая величина, знак D G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (Н о Т) и энтропийного (Т S о Т) факторов существует четыре варианта процессов.

Примеры решения задач

Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

4NH 3(г) + 5O 2(г) = 4NО (г) + 6H 2 O (ж) .

Объяснить знак и величину S о.

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

S о х.р.,298 = 4S о 298 (NО (г) ) + 6S о 298 (H 2 O (ж)) - 4S о 298 (NH 3(г)) - 5S о 298 (O 2(г)) = 4× 210,64 + 6× 69,95 - 4× 192,66 - 5× 205,04 = - 533,58 Дж/К

В данной реакции V 0 (n г = - 5), следовательно и S o х.р.,298

. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH 4 NO 3(к) . Отличается ли стандартная энтропия образования NH 4 NO 3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH 4 NO 3 отвечает изменение энтропии в процессе:

N (г) + 2H 2(г) + 3/2O 2(г) = NH 4 NO 3(к) ; S о f,298 (NH 4 NO 3(к)) = ?

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

S о х.р.,298 = S о f,298 (NH 4 NO 3(к)) = S о 298 (NH 4 NO 3(к)) - S о 298 (N 2(г)) - 2S о 298 (H 2(г)) – 3/2S о 298 (O 2(г)) = 151,04–191,50- 2× 130,52–3/2× 205,04 = - 609,06 Дж/(моль·К).

Стандартная энтропия образования NH 4 NO 3 (к), равная - 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298 (NH 4 NO 3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины S 0 f,298 , как правило, знакопеременны.

Изменение энергии Гиббса реакции

2Н 2(г) + О 2(г) = 2 Н 2 О (ж)

равно G о 298 = –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции S о <0. Поскольку G о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку Т S о <0.

Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

С 4 Н 10(г) = 2С 2 Н 4(г) + Н 2(г) .

G о х.р.,298 = 2G о f,298 (С 2 Н 4(г) ) + G о f,298 (Н 2(г) ) - G о f,298 (С 4 Н 10(г) ) = 2× 68,14 + 17,19 = 153,47 кДж.

G о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

S о х.р.,298 = 2S о 298 (С 2 Н 4(г) ) + S о 298 (Н 2(г) ) - S о 298 (С 4 Н 10(г) ) = 2× 219,45 + 130,52 – 310,12 = +259,30 Дж/К.

Поскольку S о х.р.,298 > 0, то при температуре Т> Н о /S о величина G о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Пользуясь справочными данными по G о f,298 и S о 298 , определите H о 298 реакции N 2 O (г) + 3H 2(г) = N 2 H 4(г) + H 2 O (ж) .

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

G о х.р.,298 = G о f,298 (N 2 H 4 (г)) + G о f,298 (H 2 O(ж)) – G о f,298 (N 2 O(г)) – 3 G о f,298 (H 2 (г)) = 159,10 + (–237,23) – 104,12 – 0 = –182,25 кДж.

S о х.р.,298 = S о 298 (N 2 H 4 (г)) + S о 298 (H 2 O(ж)) – S о 298 (N 2 O(г)) - 3S о 298 (H 2 (г)) = 238,50 + 69,95 – 219,83 –3× 130,52 = –302,94 Дж/К.

G о 298 = Н о 298 – Т S о 298 . Подставляя в это уравнение величины Н о 298 и Т S о 298 , получаем:

Н о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку S о 298 выражена в Дж/(моль× К), то при проведении расчетов G 0 298 необходимо также выразить в Дж или величину S 0 298 представить в кДж/(моль K).

Задачи для самостоятельного решения

11.1.S о f,298 NaHCO 3(к) .


11.2. Выбрать процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO 2(г) :

а) NO (г) + 1/2O 2(г) = NO 2(г) ; D

V > 0 (D n г = 7),
следовательно и D S о х.р.,298 > 0, что и подтверждено расчетом.

11.4. Используя справочные данные, определить принципиальную возможность протекания реакции при 298,15 К:

NiO (к) + C (графит) = Ni (к) + CO (г) .

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.


11.5. Рассчитать стандартную энергию Гиббса образования D G о f,298 C 2 H 5 OH (ж) , используя справочные данные о величинах D Н о f,298 и S о 298 .


11.6. Используя справочные данные, определить стандартную энтропию образования Таким образом, самопроизвольно протекают два процесса.
Так как значение D G о 1 более отрицательное,
то эффективнее при 298 К будет протекать процесс восстановления магнием.


11.8. Используя справочными данными по величинам S о 298 , определите возможность самопроизвольного протекания в изолированной системе при 298 К процесса:
KClO 3(к) =KCl (к) +3/2O 2(к) .


11.9. Используя справочные данные, вычислить при 298 К изменение энтропии в процессе:
Н 2(г) +1/2О 2(г) =Н 2 О (г) .

11.10. На основе справочных данных оценить температуру восстановления WO 3(к) водородом:
WO 3(к) +3H 2(г) =W (к) +3H 2 O (г) .


© Факультет естественных наук РХТУ им. Д.И. Менделеева. 2013 г.

Что еще почитать