Интегральный признак сходимости. Сходимость ряда. Знакочередующиеся и знакопеременные ряды и их сходимость. Примеры

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.

Своим внеочередным появлением данный раздел обязан многим и многим авторам, читая труды которых так и хотелось запустить оными трудами в самих писателей. Собственно, я планировал выложить данную тему полностью лишь по мере её окончательной готовности, однако ввиду слишком большого количества вопросов по ней, изложу некоторые моменты сейчас. Впоследствии материал будет дополнен и расширен. Начнём с определений.

Ряд вида $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n>0$, называется знакочередующимся.

Знаки членов знакочередующегося ряда строго чередуются:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=u_1-u_2+u_3-u_4+u_5-u_6+u_7-u_8+\ldots $$

Например, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ - знакочередующийся ряд. Бывает, что строгое чередование знаков начинается не с первого элемента, однако для исследования на сходимость это несущественно.

Почему чередование знаков не с первого элемента является несущественным? показать\скрыть

Дело в том, что среди свойств числовых рядов есть утверждение, которое позволяет нам отбрасывать "лишние" члены ряда. Вот это свойство:

Ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится тогда и только тогда, когда сходится любой из его остатков $r_n=\sum\limits_{k=n+1}^{\infty}u_k$. Отсюда следует, что отбрасывание или добавление к некоторому ряду конечного количества членов не изменяет сходимости ряда.

Пусть нам задан некий знакочередующийся ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, и пусть для этого ряда выполнено первое условие признака Лейбница, т.е. $\lim_{n\to{\infty}}u_n=0$. Однако второе условие, т.е. $u_n≥u_{n+1}$, выполняется начиная с некоего номера $n_0\in{N}$. Если $n_0=1$, то мы получаем обычную формулировку второго условия признака Лейбница, посему ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ будет сходиться. Если же $n_0>1$, то разобьём ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ на две части. В первую часть выделим все те элементы, номера которых меньше $n_0$:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=\sum\limits_{n=1}^{n_0-1}(-1)^{n+1}u_n+\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n $$

Для ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ выполнены оба условия признака Лейбница, поэтому ряд $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ сходится. Так как сходится остаток, то будет сходиться и исходный ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$.

Таким образом, совершенно неважно, выполнено ли второе условие признака Лейбница, начиная с первого, или же с тысячного элемента - ряд всё равно будет сходиться.

Отмечу, что признак Лейбница является достаточным, но не необходимым условием сходимости знакочередующихся рядов. Иными словами, выполнение условий признака Лейбница гарантирует сходимость ряда, но невыполнение оных условий не гарантирует ни сходимости, ни расходимости. Разумеется, невыполнение первого условия, т.е. случай $\lim_{n\to{\infty}}u_n\neq{0}$, означает расходимость ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$, однако невыполнение второго условия может произойти как для сходящегося, так и расходящегося ряда.

Так как знакочередующиеся ряды частенько встречаются в стандартных типовых расчётах, то я составил схему, по которой можно исследовать на сходимость стандартный знакочередующийся ряд.

Разумеется, можно напрямую применять признак Лейбница, минуя проверку сходимости ряда из модулей. Однако для стандартных учебных примеров проверка ряда из модулей необходима, так как большинство авторов типовых расчетов требуют не просто выяснить, сходится ряд или нет, а определить характер сходимости (условная или абсолютная). Перейдем к примерам.

Пример №1

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ на сходимость.

Для начала выясним, действительно ли данный ряд знакочередующийся. Так как $n≥1$, то $4n-1≥3>0$ и $n^2+3n≥4>0$, т.е. при всех $n\in{N}$ имеем $\frac{4n-1}{n^2+3n}>0$. Таким образом, заданный ряд имеет вид $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n=\frac{4n-1}{n^2+3n}>0$, т.е. рассматриваемый ряд - знакочередующийся.

Обычно такая проверка делается устно, однако пропускать её крайне нежелательно: ошибки в типовых расчётах нередки. Часто бывает, что знаки членов заданного ряда начинают чередоваться не с первого члена ряда. В этом случае можно отбросить "мешающие" члены ряда и исследовать сходимость остатка (см. примечание в начале этой страницы).

Итак, нам задан знакочередующийся ряд. Будем следовать вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right| =\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n} $$

Проверим, сходится ли составленный ряд из модулей. Применим признак сравнения . Так как при всех $n\in{N}$ имеем $4n-1=3n+n-1≥3n$ и $n^2+3n≤n^2+3n^2=4n^2$, то:

$$ \frac{4n-1}{n^2+3n}≥ \frac{3n}{4n^2}=\frac{3}{4}\cdot\frac{1}{n} $$

Гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, поэтому будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{3}{4}\cdot\frac{1}{n}\right)$. Следовательно, согласно признаку сравнения ряд $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n}$ расходится. Обозначим $u_n=\frac{4n-1}{n^2+3n}$ и проверим, выполнены ли условия признака Лейбница для исходного знакочередующегося ряда. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{4n-1}{n^2+3n} =\lim_{n\to{\infty}}\frac{\frac{4}{n}-\frac{1}{n^2}}{1+\frac{3}{n}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. Немалое количество авторов предпочитает записать несколько первых членов ряда, а затем сделать вывод, что неравенство $u_n≥u_{n+1}$ выполнено.

Иными словами, это "доказательство" для данного ряда имело бы такой вид: $\frac{2}{3}≤\frac{5}{8}≤\frac{8}{15}≤\ldots$. После сравнения нескольких первых членов делается вывод: для остальных членов неравенство сохранится, каждый последующий будет не более предыдущего. Откуда взялся этот "метод доказательства" я не знаю, но он ошибочен. Например, для последовательности $v_n=\frac{10^n}{n!}$ получим такие первые члены: $v_1=10$, $v_2=50$, $v_3=\frac{500}{3}$, $v_4=\frac{1250}{3}$. Как видите, они возрастают, т.е., если ограничиться сравнением нескольких первых членов, то можно сделать вывод, что $v_{n+1}>v_n$ для всех $n\in{N}$. Однако такой вывод будет категорически неверным, так как начиная с $n=10$ элементы последовательности будут убывать.

Как же доказать неравенство $u_n≥u_{n+1}$? В общем случае для этого есть несколько способов. Самый простой в нашем случае - рассмотреть разность $u_n-u_{n+1}$ и выяснить её знак. В следующем примере рассмотрим иной способ: посредством доказательства убывания соответствующей функции.

$$ u_n-u_{n+1} =\frac{4n-1}{n^2+3n}-\frac{4(n+1)-1}{(n+1)^2+3(n+1)} =\frac{4n-1}{n^2+3n}-\frac{4n+3}{n^2+5n+4}=\\ =\frac{(4n-1)\cdot\left(n^2+5n+4\right)-\left(n^2+3n\right)\cdot(4n+3)}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)} =\frac{4n^2+2n-4}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)}. $$

Так как $n≥1$, то $4n^2-4≥0$, откуда имеем $4n^2+2n-4>0$, т.е. $u_n-u_{n+1}>0$, $u_n>u_{n+1}$. Бывает, конечно, что неравенство $u_n≥u_{n+1}$ выполняется не с первого члена ряда, однако это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}$ на сходимость.

Для начала рассмотрим выражение $\frac{5n-4}{\sqrt{2n^3-1}}$. Стоит произвести небольшую проверку корректности условия. Дело в том, что очень часто в условиях стандартных типовых расчётов можно встретить ошибки, когда подкоренное выражение является отрицательным, или же в знаменателе при некоторых значениях $n$ появляется ноль.

Дабы избежать таких неприятностей, произведём простенькое предварительное исследование. Так как при $n≥1$ имеем $2n^3≥2$, то $2n^3-1≥1$, т.е. выражение под корнем не может быть отрицательным или равняться нулю. Следовательно, условие вполне корректно. Выражение $\frac{5n-4}{\sqrt{2n^3-1}}$ определено при всех $n≥1$.

Добавлю, что при $n≥1$ верно неравенство $\frac{5n-4}{\sqrt{2n^3-1}}>0$, т.е. нам задан знакочередующийся ряд. Будем исследовать его согласно вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right| =\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}} $$

Проверим, сходится ли ряд, составленный из модулей членов заданного ряда. Применим признак сравнения . В решении предыдущего примера мы применяли первый признак сравнения. Здесь же, сугубо для разнообразия, применим второй признак сравнения (признак сравнения в предельной форме). Сравним ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$ с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$:

$$ \lim_{n\to\infty}\frac{\frac{5n-4}{\sqrt{2n^3-1}}}{\frac{1}{\sqrt{n}}} =\lim_{n\to\infty}\frac{5n\sqrt{n}-4\sqrt{n}}{\sqrt{2n^3-1}} =\lim_{n\to\infty}\frac{\frac{5n\sqrt{n}}{n\sqrt{n}}-\frac{4\sqrt{n}}{n\sqrt{n}}}{\sqrt{\frac{2n^3-1}{n^3}}} \lim_{n\to\infty}\frac{5-\frac{4}{n}}{\sqrt{2-\frac{1}{n^3}}} =\frac{5}{\sqrt{2}}. $$

Так как $\frac{5}{\sqrt{2}}\neq{0}$ и $\frac{5}{\sqrt{2}}\neq\infty$, то одновременно с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$.

Итак, абсолютной сходимости заданный знакочередующийся ряд не имеет. Обозначим $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ и проверим, выполнены ли условия признака Лейбница. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{5n-4}{\sqrt{2n^3-1}} =\lim_{n\to{\infty}}\frac{\frac{5n}{n^{\frac{3}{2}}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{\frac{2n^3-1}{n^3}}} =\lim_{n\to{\infty}}\frac{\frac{5}{\sqrt{n}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{2-\frac{1}{n^3}}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. В прошлом примере мы рассмотрели один из способов доказательства этого неравенства: посредством выяснения знака разности $u_n-u_{n+1}$. В этот раз обратимся к иному способу: вместо $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ рассмотрим функцию $y(x)=\frac{5x-4}{\sqrt{2x^3-1}}$ при условии $x≥1$. Отмечу, что поведение данной функции при условии $x<1$ нам совершенно безразлично.

Наша цель состоит в том, чтобы доказать невозрастание (или убывание) функции $y(x)$. Если мы докажем, что функция $y(x)$ является невозрастающей, то для всех значений $x_2>x_1$ будем иметь $y(x_1)≥y(x_2)$. Полагая $x_1=n$ и $x_2=n+1$ получим, что из неравенства $n+1>n$ последует истинность неравенства $y(n)≥y(n+1)$. Так как $y(n)=u_n$, то неравенство $y(n)≥y(n+1)$ есть то же самое, что и $u_{n}≥u_{n+1}$.

Если же мы покажем, что $y(x)$ - убывающая функция, то из неравенства $n+1>n$ последует истинность неравенства $y(n)>y(n+1)$, т.е. $u_{n}>u_{n+1}$.

Найдём производную $y"(x)$ и выясним её знак для соответствующих значений $x$.

$$ y"(x)=\frac{(5x-4)"\cdot\sqrt{2x^3-1}-(5x-4)\cdot\left(\sqrt{2x^3-1}\right)"}{\left(\sqrt{2x^3-1}\right)^2} =\frac{5\cdot\sqrt{2x^3-1}-(5x-4)\cdot\frac{1}{2\sqrt{2x^3-1}}\cdot{6x^2}}{2x^3-1}=\\ =\frac{5\cdot\left(2x^3-1\right)-(5x-4)\cdot{3x^2}}{\left(2x^3-1\right)^{\frac{3}{2}}} =\frac{-5x^3+12x^2-5}{\left(2x^3-1\right)^{\frac{3}{2}}} $$

Полагаю, очевидно, что при достаточно больших положительных значениях $x≥1$ многочлен в знаменателе будет меньше нуля, т.е. $-5x^3+12x^2-5<0$. Эту "очевидность" несложно обосновать формально - если вспомнить курс алгебры. Дело в том, что согласно лемме о модуле старшего члена, при достаточно больших значениях $|x|$ знак многочлена совпадает с знаком его старшего члена. Адаптируясь к нашей задаче получаем, что существует такое число $c≥1$, то для всех $x≥c$ будет верным неравенство $-5x^3+12x^2-5<0$. В принципе, существования такого числа $c$ уже вполне достаточно для дальнейшего решения задачи.

Однако давайте подойдём к вопросу менее формально. Дабы не привлекать лишних лемм из алгебры, просто грубо оценим значение выражения $-5x^3+12x^2-5$. Учтём $-5x^3+12x^2-5=x^2(-5x+12)-5$. При $x≥3$ имеем $-5x+12<0$, посему $x^2(-5x+12)-5<0$.

Таким образом, при $x≥3$ имеем $y"(x)<0$, т.е. функция $y(x)$ убывает. А это, в свою очередь, означает, что при $n≥3$ верно неравенство $u_n>u_{n+1}$, т.е. второе условие признака Лейбница выполнено. Разумеется, мы показали выполнение второго условия не с $n=1$, а с $n=3$, но это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ на сходимость.

Данный пример не представляет большого интереса, поэтому я распишу его коротко. Нам задан знакочередующийся ряд, который вновь станем исследовать по . Составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right| =\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n} $$

Применим признак Д"Аламбера . Обозначая $u_n=\frac{3n+4}{2^n}$, получим $u_{n+1}=\frac{3n+7}{2^{n+1}}$.

$$ \lim_{n\to\infty}\frac{u_{n+1}}{u_{n}} =\lim_{n\to\infty}\frac{\frac{3n+7}{2^{n+1}}}{\frac{3n+4}{2^n}} =\frac{1}{2}\lim_{n\to\infty}\frac{3n+7}{3n+4} =\frac{1}{2}\lim_{n\to\infty}\frac{3+\frac{7}{n}}{3+\frac{4}{n}} =\frac{1}{2}\cdot{1}=\frac{1}{2}. $$

Так как $\frac{1}{2}<1$, то согласно признаку Д"Аламбера ряд $\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n}$ сходится. Из сходимости ряда $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right|$, что ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ сходится, причём сходится абсолютно.

Отмечу, что для решения заданного примера нам не потребовался признак Лейбница. Именно поэтому удобно сперва проверить сходимость ряда из модулей, а потом уже, при необходимости, исследовать сходимость исходного знакочередующегося ряда.

Ответ : ряд сходится абсолютно.

Теорема. Пусть - непрерывная, неотрицательная, монотонно убывающая функция, определенная при . Тогда ряд и интеграл либо оба сходятся, либо оба расходятся.

Доказательство. Ввиду монотонности при всех выполняются неравенства . Интегрируя, получаем . Тогда , или . Поэтому если сходится, то . Тогда и , ряд сходится.

Пусть теперь наоборот, известно, что ряд сходится. Тогда . Взяв произвольное выберем так, чтобы . Тогда . Значит, сходится.

Абсолютная сходимость. Свойства абсолютно сходящихся рядов

Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд .

Легко доказать, что из сходимости ряда вытекает сходимость ряда . По критерию Коши, примененному к , получаем: . Из полученного неравенства следует, что и для исходного ряда также выполнен критерий Коши, следовательно он сходится.

Обозначим , т.е. , . Очевидны равенства: . Рассмотрим ряды и . Если они сходятся, то сходится и ряд , т.е. ряд абсолютно сходится. Если же сходятся ряды , то, т.к. , ряды и тоже сходятся. Таким образом, для абсолютной сходимости необходима и достаточна сходимость рядов и .

(признак Лейбница).

Если члены знакочередующегося ряда (9.4.1), будучи взяты по модулю, образуют не возрастающую бесконечно малую последовательность, т.е. и, то этот рядсходится .

Приведем примеры знакочередующихся рядов.

Исследовать сходимость ряда .

Этот ряд сходится по признаку Лейбница, так как его члены убывают по абсолютной величине и при.

Исследовать сходимость ряда .

Нетрудно убедиться, что данный ряд удовлетворяет условиям Теоремы 1 и потому сходится .

Замечание. В теореме Лейбница существенно не только условие , но и условие. Так, например, для рядавторое условие нарушено и, хотя, ряд расходится. Это видно, если данный ряд представить в виде, т.е. удвоенного гармонического ряда.

Под знакопеременным рядом будем понимать ряд, в котором любой его член может быть как положительным , так и отрицательным .

Рассмотрим случай ряда с членами, имеющими произвольные знаки:

. (9.4.2)

Одновременно рассмотрим ряд

, (9.4.3)

где - члены ряда (9.4.2).

(достаточный признак сходимости знакопеременного ряда). Из сходимости ряда (9.4.3) следует сходимость ряда (9.4.2).

Признак Даламбера сходимости знакоположительного ряда

Пусть дан знакоположительный ряд и существует
. Тогда, еслиq < 1, то ряд сходится; если q > 1, то ряд расходится.

Доказательство: 1) пусть q < 1, докажем, что ряд сходится. Поскольку существует предел
, можно записать
или
a n (q - ) < a n +1 < a n (q + ). Выберем  таким образом, чтобы q +  < 1. Из полученного двойного неравенства и неравенства q +  < 1 следует, что

a N +2 < (q + ) a N +1 ;

a N +3 < (q + ) a N +2 < (q + ) 2 a N +1 ;

a N +4 < (q + ) a N +3 < (q + ) 3 a N +2 < (q + ) 3 a N +1 .

Итак, члены ряда a N +2 + a N +3 + a N +4 +… меньше соответствующих членов бесконечной геометрической прогрессии a N +1 (q + ) + a N +2 (q + ) 2 + a N +3 (q + ) 3 +… Знаменатель прогрессии меньше единицы, поэтому прогрессия представляет собой сходящийся ряд (см. №1). По признаку сравнения, ряд также является сходящимся.

2) Пусть теперь q > 1. Возьмем такое число , что q -  будет также больше единицы. Тогда для достаточно больших n, на основании выведенного в пункте 1) данного доказательства двойного неравенства, мы будем иметь

Отсюда a N < a N +1 < a N +2 . Следовательно члены ряда возрастают при увеличении их номера, не выполняется необходимый признак сходимости. Поэтому рядрасходится. Теорема полностью доказана.

Если q = 1, то нельзя определить характер сходимости ряда. Например, ряд сходится, а рядрасходится.

Знакочередующиеся ряды. Признак сходимости Лейбница. Понятие об абсолютно и условно сходящихся рядах

Знакочередующиеся ряды. Признак сходимости Лейбница. Знакочередующийся ряд – ряд, у которого любые рядом стоящие члены имеют противоположные знаки.

Признак сходимости Лейбница : если абсолютные величины членов знакочередующегося ряда монотонно убывают при возрастании их номера и n-й член ряда при неограниченном возрастании n стремится к нулю, т.е.

,

то этот ряд сходится.

Доказательство: возьмем сумму S 2 m первых членов ряда и запишем ее следующим образом:

S 2m = (a 1 – a 2) + (a 3 + a 4) +…+ (a 2m-1 + a 2m).

Так как разности, стоящие в скобках, на основании условия монотонности убывания абсолютных величин членов ряда, положительны, то

Если 2m возрастает, то S 2 m не убывает, т.к. каждый раз прибавляются положительные или равные нулю слагаемые.

С другой стороны ту же сумму можно представить в виде:

S 2m = a 1 – (a 2 – a 3) – (a 4 – a 5) -…- (a 2m-2 – a 2m-1) – a 2m .

В скобках стоят положительные числа, поэтому

S 2 m a 1 .

Следовательно, S 2 m , будучи монотонно возрастающей (точнее, не убывающей) и ограниченной последовательностью, имеет при m   конечный предел S:

.

Но очевидно, что

S 2 m +1 = S 2 m + а 2 m +1 .

На основании условия о стремлении n-го члена к нулю, имеем также

.

Таким образом, получаем

Мы получили, что при неограниченном возрастании n частные суммы S n стремятся к одному и тому же пределу S, независимо от того, будет ли n четное или нечетное. Поэтому ряд сходится.

Понятие об абсолютно и условно сходящихся рядах. Ряд, состоящий из членов разных знаков, называется знакопеременным . Знакопеременный ряд называется абсолютно сходящимся , если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов. Ряд называется условно сходящимся , если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Теорема: если для знакопеременного ряда сходится ряд, составленный их абсолютных величин его членов, то данный ряд также сходится.

Доказательство: рассмотрим вспомогательный ряд

Так как 1) 0
и 2) ряд
в силу заданной по условию сходимости рядатакже сходится, то на основании признака сравнения и рассматриваемый вспомогательный ряд сходится. Поэтому наш рядпредставляет собой разность двух сходящихся рядов

=

и, следовательно, сходится, ч. т. д. Обратное утверждение не верно.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница.).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

Числовой ряд, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом. Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд? знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (?) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 1. Если числовой ряд сходится и его сумма равна S, а частичная сумма равна S n , то называется остатком ряда, причём, т.е. остаток сходящегося ряда стремится к 0.

Рассмотрим сходящийся знакочередующийся ряд как частный случай знакопеременного ряда

где. Запишем его в виде, тогда по признаку Лейбница; так как, то, т.е. остаток сходящегося ряда стремится к 0.

Для знакопеременных рядов вводятся понятия абсолютной и условной сходимости.

Определение 2. Ряд называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Определение 3. Если числовой ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 2 (достаточный признак сходимости знакопеременных рядов). Знакопеременный ряд сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Доказательство. Обозначим через частичную сумму ряда: , а через? частичную сумму ряда: . Обозначим через сумму всех положительных членов, а через сумму абсолютных величин всех отрицательных членов, входящих в. Очевидно, что.

По условию теоремы ряд сходится, тогда существует, и так как последовательность? монотонно возрастающая и неотрицательная, то. Очевидно, что, тогда последовательности и являются монотонно возрастающими и ограниченными, причем их пределы равны и. Тогда. Значит, исходный знакопеременный ряд сходится и сходится абсолютно. Теорема доказана.

Замечание. Теорема 2 даёт только достаточное условие сходимости знакопеременных рядов. Обратная теорема неверна, т.е. если знакопеременный ряд сходится, то не обязательно, что сходится ряд, составленный из модулей (он может быть как сходящимся, так и расходящимся). Например, ряд сходится по признаку Лейбница (см. пример 1 данной лекции), а ряд, составленный из абсолютных величин его членов, (гармонический ряд) расходится.

Пример 2. Исследовать на условную и абсолютную сходимость ряд.

Решение. Данный ряд является знакопеременным, общий член которого обозначим: . Составим ряд из абсолютных величин и применим к нему признак Даламбера. Составим предел, где, . Проведя преобразования, получаем. Таким образом, ряд сходится, а значит, исходный знакопеременный ряд сходится абсолютно. Ответ: ряд абсолютно сходится.

Пример 3. Исследовать на абсолютную и условную сходимость ряд.

Решение. А) Исследуем ряд на абсолютную сходимость. Обозначим и составим ряд из абсолютных величин. Получаем ряд с положительными членами, к которому применяем предельный признак сравнения рядов (теорема 2, лекция 2, разд. 2.2). Для сравнения с рядом рассмотрим ряд, который имеет вид. Этот ряд является рядом Дирихле с показателем, т.е. он расходится. Составим и вычислим следующий предел. Так как предел существует, не равен 0 и не равен?, то оба ряда и ведут себя одинаково. Таким образом, ряд расходится, а значит, исходный ряд не является абсолютно сходящимся.

Б) Далее исследуем исходный ряд на условную сходимость. Для этого проверим выполнение условий признака Лейбница (теорема 1, разд. 3.1). Условие 1): , где, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию, определенную при (функция такова, что при имеем). Для исследования этой функции на монотонность найдём её производную: . Эта производная при. Следовательно, функция монотонно убывает при указанных значениях х. Полагая, получаем, где. Это означает, чтоусловие 2) выполнено. Для проверки условия 3) находим предел общего члена: , т.е. третье условие выполняется. Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.

Ответ: ряд условно сходится.

Свойства абсолютно и условно сходящихся рядов

Свойство 1. Если ряд абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если? сумма всех его положительных членов, а? сумма всех абсолютных величин отрицательных членов, то сумма ряда равна.

Свойство 2. Если ряд абсолютно сходится и, то ряд также абсолютно сходится.

Свойство 3. Если ряды и абсолютно сходятся, то ряды также абсолютно сходятся.

Свойство 4 (теорема Римана). Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Что еще почитать