Как преобразовать кинетическую энергию в электрическую. Процесс преобразования энергии в электрических машинах. Принципы получения переменного и постоянного тока

С момента выхода в свет Toyota Prius стукнуло уже за 20 лет, и с тех пор концепция рекуперативного(регенеративного) торможения стала достаточно известной, как метод повышения дальности пробега в гибридных и электрических транспортных средствах. Но знаете ли вы, что применение не ограничивается EV автомобилями? В наши дни вы можете найти ее во всем, в том числе велосипедах, скейтбордах и самокатах.

(демонстрация системы рекуперации энергии в bmw )

Давайте же разберемся, как работает эта технология, насколько она продуктивна в различных средствах передвижения и разумно ли везде ее устанавливать.

Что такое рекуперативное торможение

Движущиеся объекты обладают кинетической энергией, а когда применяется тормоз для замедления, всей этой мощи необходимо куда-то идти.

Вернемся немного в прошлое, давние времена эры неандертальцев или просто машин с ДВС. В таких автомобилях тормоза основаны исключительно на трении, поэтому при замедлении вся энергия превращается в тепло, а значит уходит в никуда, просто теряется в окружающей среде.

Но мы все же эволюционировали и нашли пути получше. Регенеративное торможение использует мотор электромобиля в качестве генератора для преобразования основной доли кинетической энергии, теряемой при замедлении, назад в батарею. В следующий раз, когда машина ускоряется, она расходует часть энергии, ранее сохраненную от рекуперативного торможения.

(Регенеративная система bmw i3)

Важно понять, что регенеративное торможение не является магическим увеличителем диапазона пробега электромобилей. Оно не делает машины более эффективными как таковые, а просто делает их менее неэффективными. В принципе, самым лучшим вариантом езды будет разгон до постоянной скорости, а затем никогда не касаться педали тормоза. Поскольку чтобы замедлиться, а потом снова вернуться к прежней скорости, потребуются лишние затраты сил, то вы получите куда больший диапазон хода, в первую очередь просто не замедляясь.

Но, очевидно, что это не реалистично. Так как нам приходится снижать скорость многократно, рекуперация - это следующий лучший вариант, так как она делает этот процесс менее бесполезным.

Насколько хорошо рекуперативное торможение

Чтобы правильно оценить данную технологию, нам нужно посмотреть на два разных параметра: коэффициент полезного действия(КПД) и эффективность. Несмотря на кажущееся сходство, они совершенно разные. КПД говорит о том, с каким успехом захватывается «потерянная» мощность торможения. Все превратилось в тепло или удалось перевести кинетический потенциал в нужное русло? С другой стороны, эффективность относится к тому, как сильно влияет регенеративное торможение на длину пути. Значительно ли увеличится ваш диапазон, или вы даже не заметите большой разницы?

(визуализация работы системы рекуперация энергии торможения в машинах VW - Volkswagen)

КПД

Никакая машина не способна достичь коэффициента полезного действия в 100% (без нарушения законов физики), так как любая передача энергии неизбежно повлечет за собой потерю в форме тепла, света, шума и т. д. КПД процесса зависит от многих факторов, таких как двигатель, батарея и контроллер, но часто значение оценивается в районе 60-70%. По словам Tesla , их технология обычно теряет 10-20% кинетического потенциала при попытке его захватить, а затем еще 10-20% при преобразовании отложенных запасов обратно в ускорение. Это довольно стандартные числа для основной массы электрических транспортных средств, включая машины, грузовики, велосипеды, самокаты и т. д.

Отметим, что эти 70% не говорят нам, что регенеративное торможение даст 70% -ный рост пути от одного заряда. Технология не приведет к увеличению диапазона от 100 км до 170 км. Это лишь означает, что 70% кинетической энергии, потерянной во время торможения, может быть снова возвращено.

Поэтому рассмотрение лишь КПД системы мало что значит. Что должно нас больше заинтересовать, так это эффективность рекуперативного торможения.

Эффективность

Здесь все куда интереснее. Эффективность рекуперативного торможения - это показатель того, насколько система способна увеличить запас хода транспортного средства.

Как вы, наверное, уже догадались, показатель значительно варьируется в зависимости от факторов, включая условия движения, местность и размер транспортного средства.

Немалое влияние оказывают условия вождения. Вы увидите значительно лучшую отдачу в городе, где приходится многократно сбрасывать скорость на светофорах или в пробках, чем на шоссе. Ландшафт также играет весомую роль. Подъем в гору не дает вам много шансов на остановку, а вот при спуске для безопасности часто нужно притормаживать, что позволит преобразовать больший объем кинетических запасов. На длинных склонах рекуперативная система может применяться почти без остановок, чтобы регулировать скорость, тем самым заряжая аккумулятор в течении продолжительного промежутка.

Размер транспортного средства может быть самым значительным фактором для данного показателя по той простой причине, что более тяжелые тела содержат в себе гораздо больший импульс и кинетическую энергию. Подобно тому, как большой маховик является более эффективным, четырехколесный автомобиль имеет куда больше кинетической энергии при движении, чем мотоцикл или самокат.

Эффективность системы регенерации в автомобилях

Данные для сравнения могут быть несколько сложными. Машины Tesla выдают мощность рекуперативного торможения в 60 кВт при жесткой остановке, но это не отвечает на более интересный вопрос. Мы хотим знать, сколько энергии мы регенерируем во время поездки, а не насколько сильны наши тормоза каждый раз, когда мы месим педаль.

К счастью, ряд водителей Tesla смогли посчитать возврат энергии, используя различные приложения для отслеживания данных. Владельцы Model S сообщили о возмещении около 32% от общего потребления энергии в момент подъема, а затем спуска на холмистой местности. Таким образом, при таком коэффициенте ход увеличивается со 100 до 132 км. Другой собственник рассказал о регенерации 28% энергии (форум на датском языке). Остальные же пишут , что во время обычных поездок возвращается в среднем 15-20% от общего потребления.

Другие автопроизводители также использую данную систему в своих машинах. Например Audi говорит , что технология рекуперативного торможения, установленная в Audi Q7 позволит сэкономить до 3% топлива. Но если брать только электромобили, то .

Эффективность рекуперативного торможения в велосипедах, самокатах, скейтбордах и других персональных EV

Для небольших электрических транспортных средств цифры не столь оптимистичны. На многих велосипедах с функцией рекуперативного торможения средним показателем является 4-5% регенерации, максимум 8% в холмистых районах. Другие персональные электромобили, включая самокаты и скейтборды, имеют схожие результаты.

Как мы писали выше, столь небольшие цифры во многом связаны с меньшим весом данных средств. У них просто нет большого импульса и, следовательно, они имеют меньшую кинетическую энергию для преобразования обратно аккумулятор.

А это вообще важно, насколько хорошо работают рекуперативные тормоза?

В индустрии электрических велосипедов регенеративное торможение иногда может использоваться скорее как маркетинговый инструмент, чем как целесообразное нововведение. Поскольку технология, как правило, возможна только в электрических байках с более крупными безредукторными двигателями, то производители таких велосипедов будут обязательно использовать столь эффективную разработку в своих моделях. В то же время компании, выпускающие байки со среднеразмерными приводами и другими редукторными моторами, которые не приспособлены к регенеративному торможению, относят технологию в разряд неэффективных и просто не ставят.

Истина заключается в том, что для небольших и персональных транспортных средств рекуперация не так эффективна, как в крупных электромобилях, однако эта функция все равно имеет множество преимуществ.

Одним из самых весомых плюсов разработки можно назвать применение в качестве еще одной замедляющей силы для небольших персональных EV. К примеру, электрический самокат Xiaomi M365 для переднего моторного колеса использует только остановку регенерацией, в то время как для заднего колеса применяется традиционный дисковый тормоз. Это означает, что самокат имеет два независимых элемента замедления хода с одним рычагом управления для их активации, что снижает стоимость, вес и сложность сборки.

Рекуперация также позволяет внести механизм остановки в скейтборды - подвиг, который ранее выполнялся через трение подошвы вашей обуви о тротуар. Данная функция является очень полезной для безопасности в связи с появлением популярных моделей, достигающих скоростей более 30 км/ч.

Еще одним преимуществом регенеративного торможения является продление срока службы обычным тормозным деталям, таким как кабели и тормозные колодки. Постоянное обслуживание и замена данных частей раздражает, а если учесть, что электрические велосипеды и самокаты путешествуют намного дальше и быстрее, чем их не электрические братья, то детали изнашиваются намного раньше.

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является .

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность - одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину - 59,3 % , что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие .

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор . Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла - ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство - независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство - контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Экзаменационные вопросы и ответы по дисциплине

«Энергетические установки и электрооборудование судна»,

для курсантов 2-го курса «Судовождение»,

3-й семестр.

1. Принципы преобразования механической энергии в электрическую и обратно.

Элект­рические машины предназначены для преобразования механичес­кой энергии в электрическую (генераторы) и электрической энергии в механическую (двигатели). Принцип действия всех элек­тромашин основан на законе электромагнитной индукции и возник­новении электромагнитной силы.

При перемещении прямолинейного проводника, замкнутого че­рез внешнюю цепь на нагрузку, с постоянной скоростью в одно­родном магнитном поле в проводнике индуктируется неизменяю­щаяся э.д. с. электромагнитной индукции, а в замкнутой цепи возникает электрический ток (рис. 22, а) . Направление э. д. с. в про­воднике определяют по правилу правой руки (рис. 22,в), а ее вели­чину - по формуле

E = Blv sin а, (21)

где В - магнитная индукция, характеризующая интенсивность маг­нитного поля; l - активная длина проводника, пронизываемая силовыми линиями магнитного поля, м; v - скорость перемещения проводника в магнитном поле, м/с: а - угол между направлением скорости движения проводника и направлением вектора магнитной индукции.

Если проводник движется перпендикулярно силовым линиям магнитного поля, то а=90°, a э. д. с. будет максимальной:

Направление тока в проводнике совпадает с направлением э. д. с.

На проводник с током действует электромагнитная сила (Н).Эта сила препятствует перемещению проводника в магнитном поле. Направление электромагнитной силы определяют по правилу левой руки (рис. 22,г). Для ее преодоления необходима внешняя сила. Чтобы проводник перемещался с постоянной скоростью, не­обходимо приложить внешнюю силу , равную по величине и противоположно направленную электромагнитной силе.

Из сказанного следует, что механическая мощность , затрачиваемая на движение проводника в магнитном поле, пре­образуется в электрическую мощность в цепи проводника.

В судовых генераторах внешняя сила создается первичными двигателями (дизелем, турбиной).

Преобразование электрической энергии в механическую . При пропускании электрического тока одного направления через прямо­линейный проводник, расположенный в однородном магнитном по­ле, возникает электромагнитная сила, под действием ко­торой проводник перемещается в магнитном поле с линейной ско­ростью V (рис. 22,б) Направление движения проводника совпадает с направлением действия электромагнитной силы и определяется по правилу левой руки. Во время движения проводника в нем ин­дуктируется э д. с, направленная встречно напряжению U источника электроэнергии. Часть этого напряжения затрачива­ется на внутреннем сопротивлении проводника R.

Таким образом, электрическая мощность в проводнике, преобразуется в

механическую и частично расходуется на тепловые потери проводника Именно на этом принципе ос­нована работа электродвигателей.

2. Принципы получения переменного и постоянного тока.

В реальных электрических машинах проводники конструктивно изготовляют в виде рамок. Для уменьшения магнитного сопротивления машины, а следовательно, для увеличения значений э. д. с. и к. п. д. в гене­раторах, вращающего момента и к. п. д в электродвигателях ак­тивные стороны рамки укладывают в пазы цилиндрического сталь­ного сердечника (якоря), который совместно с закрепленной на нем рамкой может свободно вращаться в магнитном поле. Для этой же цели полюсам магнита придают особую форму, при которой сило­вые линии поля всегда направлены перпендикулярно направлению движения активных сторон рамки, а магнитная индукция в воздуш­ном зазоре между полюсами и якорем распределена равномерно (рис. 23,а).

Если при помощи сторонней силы якорь вместе с рамкой вра­щать в магнитном поле полюсов, то в соответствии с законом элект­ромагнитной индукции в активных сторонах аЬ и cd рамки индук­тируются э. д. с, направленные в одну сторону и суммируемые.

При переходе активных сторон через плоскость, перпендикуляр­ную магнитному полю, индуктируемые в них э. д. с. меняют свое направление. В рамке будет действовать э д. с, переменная как по величине, так и по направлению. Если концы рамки через кон­тактные кольца соединить с внешней целью, то в цепи будет протекать переменный ток.

Рис 23 Принцип получения переменного тока

1 - щетки. 2 - контактные кольца, 3 - стальной сердечник; 4 -рамка

Для выпрямления тока электрическая машина снабжена специ­альным устройством - коллектором . Простейший коллектор пред­ставляет собой два изолированных полукольца, к которым присое­диняют концы вращающейся в магнитном поле рамки (рис. 24,а).

С внешней цепью коллекторные пластины соединены при помо­щи неподвижных щеток, рабочие поверхности которых свободно скользят по вращающемуся коллектору 2. Щетки на коллекторе устанавливают так, чтобы они переходили с одного полукольца на другое в тот момент, когда индуктируемая в рамке э. д. с. равна нулю. При повороте на 90°, когда рамка займет горизонтальное положе­ние, в ее проводниках э. д. с. не индуктируется, так как они не пе­ресекают магнитного поля. Ток в контуре также равен нулю.

Рис 24. Принцип получения постоянного тока

При перемещении еще на 90* рамка снова займет вертикальное поло­жение, ее проводники поменяются местами и направление э. д. с и тока в них изменится. Так как щетки неподвижны, то к щетке 3 (+) по-прежнему подходит ток от рамки и далее через приемник направляется к щетке 1(-). Таким образом, во внешней цепи на­правление тока не изменяется.

График выпрямленных э д с и тока изображен на рис. 24,6. Выпрямленный ток имеет пульсирующий характер. Пульсацию то­ка можно уменьшить увеличением числа рамок, вращающихся в магнитном поле машины, и соответственно числа коллекторных пластин.

Закон сохранения энергии поистине незыблем, и многовековой опыт науки и техники приучил ученых опираться на него как на основу. Колоссальное количество технических устройств, перечислять которые можно было бы бесконечно, создано человечеством на данный момент с опорой на фундаментальные законы природы и целой вселенной. Лишь единицы, из великого множества таких устройств, можно упомянуть в качестве примера.

Лук и стрелы, колесо, весло, парус, рычаг, компас, порох, микроскоп и телескоп, паровая машина, телеграф, динамит, и электрический двигатель, лампа накаливания, трансформатор, аккумулятор, атомная бомба, транзистор, лазер, искусственные спутники и космические аппараты.

Везде строго соблюдается закон сохранения энергии: натягивая тетиву лука, человек совершает работу, при этом дуга лука запасает потенциальную энергию, которая затем преобразуется в кинетическую энергию летящей с большой скоростью стрелы; колесо, весло и рычаг ведут нас к передачам и редукторам, к преобразованию крутящего момента, сил и угловой скорости, и здесь снова имеет место преобразование энергии; аккумуляторная батарея позволяет преобразовывать химическую энергию в электрическую, а генератор - механическую энергию в электрическую и т.д.

Всюду происходит преобразование энергии. Безусловно, можно сказать, что механическая энергия расходуется, а электрическая энергия возникает, словно создается, если речь идет об электрическом генераторе, но ведь это непрерывный процесс именно преобразования энергии - непрерывного ее перехода из одного вида в другой.

Хотя нарушений закона сохранения энергии нигде в природе явным образом не проявлялось, многие изобретатели прошлого, включая великого Леонардо да Винчи, много раз делали, попытки построить такое устройство, которое могло бы совершать работу бесконечно, не потребляя при этом никаких энергетических ресурсов (так называемый вечный двигатель первого рода).

И современные исследователи продолжают делать такие попытки. Ученые же говорят, что это невозможно просто потому, что тогда бы нарушалось первое начало термодинамики, которое гласит: «в любой изолированной системе запас энергии остаётся постоянным». И действительно, представьте себе систему, полностью изолированную от окружающей среды так, что ни вещество, ни энергия в каком бы то ни было виде, не могут ни поступать в нее, ни выходить из нее.

Даже если элементарно попытаться представить, существующей в реальности, такую изолированную систему, внутри которой что-то происходит, преобразуется энергия, идут какие-то процессы, а снаружи все как было, так и есть без изменений, то какой был бы в этой системе смысл? Никакого.

Идея вечного двигателя второго рода также не состоятельна по причине противоречия второму началу термодинамики, которое гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара».

В свое время на поприще прославился один европейский умелец Иоганн Эрнст Элиас Бесслер, известный как Орфериус. В 1717 году, вероятно, желая сыскать мировой славы и денег, он демонстрировал публике самодвижущееся четырехметровое деревянное колесо, которое непрерывно вращалось на оси, несмотря на видимое отсутствие снаружи приводных механизмов.

За раскрытие секрета изобретатель просил очень крупную, по тем временам, сумму денег. Многие ученые приходили и убеждались в том, что колесо без остановки вращалось, и продолжало вращаться даже спустя два месяца после первой демонстрации. Это был настоящий фурор, слухи разнеслись и за пределы Европы.

Даже Петр Первый запланировал поездку к изобретателю на 1725 год. Однако, еще до поездки Петра в Германию, на родине изобретателя со скандалом выяснилось, что колесо приводила во вращение его служанка, вместе с братом Орфериуса. Полая конструкция большого колеса все же имела скрытую передачу, шнурок от которой шел в специально приспособленную секретную комнату. После разоблачения изобретатель своими руками разрушил колесо и покинул свой город.

Вернемся к сегодняшнему дню. Если набрать в поисковике на Youtube «free energy» или , то станет очевидным обилие в современном мире реализаций так называемых . Как правило, это автономные конструкции, совершающие электрическую работу в виде питания ламп накаливания или электродвигателей.

Начиная примерно с 2011 года, в сеть Интернет регулярно попадают видеозаписи, на которых некий электрический или электромеханический преобразователь подключается на несколько секунд к аккумулятору, батарейке или к сети 220 вольт, после чего питание отключается, а устройство отдает мощность в нагрузку и буквально «питает само себя».

Бывают и совсем немыслимые варианты на постоянных магнитах, сообщающих непрерывное вращение ротору генератора с подключенной к нему нагрузкой в виде ламп. Это кажется невероятным, поскольку складывается впечатление, что либо устройство неведомым образом производит энергию, нарушая все известные физические законы, либо автор видеозаписи умышленно вводит публику в заблуждение, пытаясь таким образом развлечься или мошенническим путем получить доход.

Но невольно возникает вопрос о целесообразности таких поступков, ведь на роликах много не заработаешь, а публичные демонстрации фальшивок рано или поздно будут разоблачены. Кому и зачем нужно заниматься этими сомнительными трюками?

Зачастую изобретатели утверждают, что энергия, которую преобразуют их устройства - это энергия из окружающей среды, - та энергия, которую при определенных условиях можно собирать и преобразовывать хоть в постоянный, хоть в переменный ток нужного напряжения.

Большое значение уделяется явлению электрического резонанса, качеству заземления, и применению высокого напряжения, благодаря чему, как утверждают изобретатели, и создаются условия для поступления энергии в их устройства.

Также постоянно фигурирует имя знаменитого ученого . И действительно, электрический резонанс в электрическом преобразователе - это то условие, когда преобразователь работает с наибольшей эффективностью, именно так говорил и писал сам Тесла о своих преобразователях.

Кроме того, один из исследователей этого нового направления, на одной из первых, наделавших много шума, демонстраций, утверждал, что именно развивая схемы Тесла, ему удалось получить этот невероятный эффект. Он смог преобразовать энергию из окружающей среды в удобную для использования форму. Этот гениальный изобретатель из Грузии вдохновил своим успешным примером многих экспериментаторов по всему миру на самостоятельные исследования.

Еще одним последователем Тесла, развивающим его идеи относительно генерации, преобразования и передачи электрической энергии, был (совсем недавно умер своей смертью в возрасте около 90 лет) американский исследователь Дональд Ли Смит, который, много лет будучи работником нефтяной промышленности, занимался изучением всех доступных теоретических данных об энергии, электрическом и магнитном полях Земли, и строил на основе своих представлений высоковольтные резонансные устройства, которые могли также служить приемниками энергии из окружающей среды.

Развивая идеи Тесла, Смит построил более 200 различных устройств, каждое из которых могло питать электрическую нагрузку гораздо большей мощности, чем само устройство потребляло, например, от аккумуляторной батареи.

На публичной демонстрации в 1996 году Смит продемонстрировал широкой аудитории одно из таких устройств, которым он запитал 10 ламп накаливания по 100 Ватт, причем самому устройству требовалось лишь заземление и пусковой источник энергии в виде аккумулятора на 12 вольт, емкостью 6 ампер-часов.

Специалисты, проводившие замеры, констатировали, что если бы устройство работало просто по принципу повышающего инвертора, то батарея должна была бы давать ток силой 83 Ампера, что нереально для такой маленькой батареи, которая применялась для запуска.

Разработки Смита также вдохновляют многих экспериментаторов, и есть случаи успешных повторов его устройств во многих странах мира.

Как на территории бывшего Советского Союза, так и в Европе есть, ставшие уже известными, благодаря своим работам, экспериментаторы - радиолюбители, демонстрирующие подобные электрические установки, которые, будучи приведены в действие от батарейки, способны отдавать в нагрузку по несколько киловатт электрической энергии. Как и в предыдущих случаях, утверждается, что главное в устройствах - резонанс, высокое напряжение, и качественное заземление.

Здесь будет уместным вспомнить о том, что наша планета обладает очень большим отрицательным электрическим зарядом, а верхние слои атмосферы, ионосфера, вплоть до термосферы, в силу сильной ионизации космическими лучами, - большим положительным электрическим зарядом.

Вполне возможно, что именно эта энергия каким-то образом преобразуется устройствами в приемлемый для использования вид, ведь и у поверхности земли электрическое поле обладает некоторой реальной напряженностью. Демонстрации проводятся в самых обычных бытовых условиях, поэтому вполне закономерны и логичны сомнения и гневные комментарии к ним от многих пользователей Интернет, просматривающих эти видео.

Встречаются и механические варианты необычных генерирующих устройств, когда привод осуществляется посредством асинхронного или коллекторного двигателя, затем осуществляется понижение оборотов передачей, с увеличением крутящего момента, который затем передается на вал многополюсного (низкооборотного) генератора постоянного или переменного тока. Генератор питает нагрузку и приводной двигатель.

Это кажется невозможным, однако есть случаи очень убедительных свидетельств о том, что та или иная компания в той или иной стране выпускает такие системы, сдает их в аренду или даже продает. Примером может служить установка, недавно продемонстрированная в Румынии.

Автор произвел запуск механической системы от розетки, а затем воспользовался энергией, которую развило устройство, для питания болгарки, циркулярной пилы и мощного . Стабилизирующий маховик, вращение которого можно было отчетливо наблюдать, продолжал вращаться, показывая, что определенный уровень энергии все время поддерживается в процессе работы установки. Разумеется, шквал критики обрушился и на этого изобретателя.

Как утверждает сам румынский исследователь, его устройство работает благодаря механике.

Между тем встает вопрос о том, правомерно ли вообще считать разные виды энергии и работы полностью тождественными? Может быть, в этом кроется причина реальной возможности построения таких устройств альтернативной энергетики?

В прочем, здесь мнений может быть масса. Факт остается фактом - природа таит в себе еще много загадок, о которых не написано в учебниках, и которые человечеству еще предстоит изучить и направить в полезное русло. Верить или не верить - каждый пусть решает сам.

Что еще почитать