Получение энергии из земли. Солнце – главный источник энергии на Земле

Здравствуйте дорогие читатели ! Я, как и обещала, подготовила для Вас статью, в которой расскажу Вам о том, что такое возобновляемые источники энергии. Каких они бывают видов и чем каждый из них интересен. Давайте же начнем...

В наши дни ведется поиск альтернативных неисчерпаемых источников энергии. Некоторые из них уже разрабатываются. Энергия ветра использовалась сотни лет для плавания судов и работы ветряных мельниц. Современные ветровые турбины предназначенные для производства электричества (в одной лишь Калифорнии установленный в 15000 таких ветряков). Американские ученые пришли к выводу, что сила ветра может обеспечить выработку всей производимой США электроэнергии. Также в энергию можно преобразовывать и солнечное тепло. Сейчас в мире устанавливают множество солнечных батарей, которые обеспечивают электроэнергией какую-то часть населения в некоторых странах, в частности Филиппин, Австралии. В нынешней экологической ситуации на Земле всё больше и больше стран пытаются переходить на возобновляемые источники энергии и отказываться от существующих источников энергии из ископаемого топлива.

Существует множество современных разработок солнечных батарей и ветровых электростанций, которые с каждым годом усовершенствуются. Такое решение было принято для того, чтобы, во-первых, защитить нашу планету от ещё большего загрязнения, а во-вторых, чтобы удешевить электроэнергию для людей, которые с каждым годом потребляют всё больше и больше энергии. Сейчас становиться «модным» использовать энергию из возобновляемых источников, и больше такой вид энергии не считается устаревшим, неэффективным и неперспективным. Все как раз таки наоборот.

Вода, после ископаемого топлива, является древнейшим и важнейшим источником энергии. Водяные колеса используют уже более 2000 лет. Их в движение приводит течение рек. Такие колеса стали первым источником энергии в период Промышленной Революции конца XVIII века. В Европе в это время их насчитывалось примерно полмиллиона. Их использовали для перемалывания зерна, раздувания кузнечных мехов и управления падающим кузнечным молотом; при обжарке железа, высверливания оружейных стволов, а также для работы прядильных машин и ткацких станков. Чтобы обеспечить необходимый поток воды, обычно либо перегораживают реку плотиной, создавая запруду, либо отводят часть реки в мельничном пруду.

В качестве источника энергии сегодня из воды используется для производства электричества, или гидроэлектроэнергии. Современные ГЭС включают плотины и огромное водохранилища, которые обеспечивают поток падения воды с большой высоты. На современных ГЭС, вместо малоэффективных и громоздких водяных колес, сегодня установлены турбины, в которых поток воды вращает ротор. К каждой из таких турбин подключён электрогенератор.

Почти треть всей электроэнергии используемой в мире дает гидроэнергетика. Норвегия, в которой электроэнергии на душу населения больше, чем где-либо, живет практически исключительно за счёт гидроэнергии.

На гидроаккумулирующих электростанциях (ГАЭС) гидроэлектростанциях (ГЭС) используется потенциальная энергия воды, которая накапливается с помощью дамб. Существуют очень большие ГЭС. Самые широко известные две больших ГЭС в России — это Краснодарская (6000 МВт) и Братская (4100 МВт). Самая большая ГЭС в США это Гранд-Кули, ее мощность 6480 МВт. В 1995 году 7% электроэнергии, которая производилась во всём мире приходилось на гидроэнергетику.

Считается, что при использовании всех возможных источников можно было бы получить 2,25 млрд. кВт гидроэлектроэнергии. Начало 1990-х годов вырабатывалось всего лишь около 363 млн. кВт, или примерно 1% производимой энергии в мире.

Гидроэнергия — это один из самых чистых и дешевых энергоресурсов. Что очень важно этот ресурс постоянно возобновляется за счет прилива дождевой и речной воды.

Важнейшим преимуществом гидроэлектроэнергии является использование неисчерпаемых ресурсов. Однако для создания водохранилищ требуется затопление больших территорий, что наносит большой вред окружающей среде и нарушает экологический баланс.

Также для производства электричества научились использовать энергию приливов. Существуют приливные электростанции, в которых используются перепады уровней воды, образовавшиеся во время прилива и отлива. Для этого ограждают прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Потом воду выпускают, и она вращает гидротурбины. Устройство, называемое «нырок», преобразует движение волны в энергию. Приливные электростанции могут быть ценной энергетической помощью местного характера, но на Земле не так много соответствующих мест для их строительства.

Геотермальная электроэнергия вырабатывается с помощью тепла недр Земли. Проще всего использовать геотермальную энергию горячих источников и гейзеров. Геотермальная энергия уже используется в ряде стран, например Италии, Исландии, Новой Зеландии (в мире насчитывают 150 геотермальные электростанции) Толщина земной коры составляет 32 — 35 км, что значительно тоньше, чем лежащий под ней шар мантии, который тянется приблизительно на 2900 км к горячему жидкому ядру.

Мантия является источником богатых газами огненно-жидких пород (магма), которые извергаются действующими вулканами. Тепло, в основном, выделяется вследствие радиоактивного распада веществ в земном ядре. Температура и количество этого тепла настолько большие, что они провоцируют плавления пород мантии. Под поверхностью горячие породы могут создавать тепловые «мешки». В контакте с такими «мешками» вода нагревается и даже превращается в пар. Эти «мешки» преимущественно герметичны, поэтому горячая вода и пар очень часто находятся под большим давлением, а температура в этих средах превышает точку кипения воды на поверхности Земли. Самые большие геотермальные ресурсы сосредоточены в вулканических зонах на границах корковых плит.

Самым основным недостатком геотермальной энергии является тот факт, что ресурсы ограниченны и локализованы, если только исследования не показывают наличие значительных запасов горячий породы или возможность бурения скважин к мантии. А в 1991 году группе физиков ядерщиков из Оксфорда, что в Англии, удалось получить энергию с помощью ядерного синтеза. Речь идет о получении безопасного вида энергии.

Национальная научная организация США и НАСА провели исследования, которые засвидетельствовали, что значительное количество ветроэнергии в США можно получать в районе Больших озер, на Восточном побережье, а особенно на цепочке Алеутских островов. Максимальная расчетная мощность ветровых электростанций в этих областях может обеспечить 12% потребности США в электроэнергии. Самые большие ветроэлектростанции США размещены возле Голден Дейла, что в штате Вашингтон, где каждый из трёх генераторов (установленных на столбах высотой 60 м, диаметром ветрового колеса 90 м) дают 2,5 МВт электроэнергии. Также сейчас много стран Европы устанавливают ветроэлектростанции по новым современным технологиям. Они обеспечивают часть населения электроэнергией. Существуют программы по постепенному полному переходу на возобновляемые источники энергии во многих странах.

У солнечной энергии есть два основных преимущества. Во-первых: ее много и она относится к энергоресурсам, которые возобновляются (существование Солнца оценивается приблизительно в 5 млрд лет). Во-вторых: ее использование не причиняет нежеланных экологических последствий. Но использованию солнечной энергии препятствуют некоторые трудности. Количество этой энергии огромно, но она бесконтрольно рассеивается.

Для того чтобы получать большое количество энергии, необходимы коллекторные поверхности большой площади. Кроме этого, возникает проблема нестабильности энергосбережения: Солнце не всегда светит. Даже в пустынях, где преобладает безоблачная погода, день меняется ночью. Таким образом, необходимы накопители солнечной энергии. Но с современными технологиями все меняется и уже существуют такие накопители, и их постоянно усовершенствуют. Плюс ко всему технологии создания солнечных панелей тоже не стоят на месте, они стали гораздо эффективнее. Это уже не прошлый век! Это дает огромное преимущество для использования солнечной энергии. Некоторые теплые страны постепенно переходят на такие источники энергии.

Можно выделить три основных направления использования солнечной энергии: для кондиционирования воздуха, для отопления (в том числе горячего водоснабжения) и для прямого превращения в электроэнергию с помощью солнечных фотоэлектрических преобразователей и для крупномасштабного производства электроэнергии на основе теплового цикла.

На этом пока все на сегодня, пишите в комментариях, какой источник возобновляемой энергии Вам больше нравиться. Или, может быть, Вы уже используете какой-нибудь из них. Об ископаемом топливе можете почитать , а об энергетических ресурсах, в общем, . Подписывайтесь, чтоб не пропустить выход новых постов. Пока-пока всем.

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы :

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Окружающий нас мир обладает поистине неиссякаемым источником различных видов энергии. Некоторые из них еще в полной мере не используются и в нынешнее время – энергия Солнца, энергия взаимодействия Земли и Луны, энергия термоядерного синтеза, энергия тепла Земли.

Сейчас энергия играет решающую роль в развитии человеческой цивилизации. Существует тесная взаимосвязь между расходом энергии и объемом выпускаемой продукции. Энергетика имеет большое значение в жизни человечества. Уровень ее развития отражает уровень развития производительных сил общества, возможности научно-технического прогресса и уровень жизни населения.

Энергетические ресурсы – это материальные объекты, в которых сосредоточена энергия, пригодная для практического использования человеком. Энергетические ресурсы – носители энергии, которые используются в настоящее время или могут быть полезно использованы в перспективе .

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

В зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.

Топливно-энергетические ресурсы, используемые человечеством: нефть, природный газ, уголь, древесина, ядерное топливо и др.

2.Традиционные и альтернативные источники энергии

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называетсяпервичной .

Рис. 1 Классификация первичной энергии

При классификации первичной энергии выделяют традиционные инетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.). Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях,называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).Единственный способ преодоления энер.кризиса – это масштабное использование нетрадиц. возобновляемых источников энергии.Ветровая энергетика – это получение механической энергии от ветра с последующим преобразованием ее в электрическую. Имеются ветровые двигатели с вертикальной и горизонтальной осью вращения. Энергию ветра можно успешно использовать при скорости ветра 5 и более м/с. Недостатком является шум.Гелиоэнергетика получение энергии от Солнца.Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили названиесол нечных батарей . Биоэнергетика это энергетика, основанная на использовании биотоплива. Она включает использование растительных отходов, искусственное выращивание биомассы (водорослей, быстрорастущих деревьев) и получение биогаза.

Для существования и развития человеческого общества необходимы . Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты - это горючие полезные ископаемые (каусто - горючий, биос - органический, литос - камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22 Дж солнечной энергии . Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть - в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды. Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши. Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем. Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов - эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям. Наиболее важными из них являются: два смежных залива - Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия). Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды. Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый - слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы. Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс - деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе. Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана. Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21 атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы - в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % - в Северной Америке, 14,5 % - в странах Азии, главным образом в Китае, и 5,5 % - в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема - это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 10 14 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 10 13 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·10 15 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 10 20 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Химические источники тока ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 8 Ядерные источники энергии излучения звезд В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Глава 16 Остатки вспышек сверхновых - источники рентгеновского и радиоизлучения В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью: как правило, порядка 10 000 км/с. Большая

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Глава 21 Пульсары как источники радиоизлучения Пожалуй, труднее всего для пульсаров определяются две основные характеристики всякого «нормального» источника радиоизлучения - поток и спектр. Эти трудности связаны прежде всего с самой природой пульсаров. Дело в том,

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Источники для углубленного изучения Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или

Из книги Источники питания и зарядные устройства автора

Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или www.sciam. com)Узел Всемирной Паутины

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Источники и публикации Наиболее ранние упоминания названий светил встречаются в «Текстах пирамид», датируемых XXV-XXIII в. до н. э., - религиозном памятнике, во многом еще до конца не понятом (Faulkner, 1969; Mercer, 1952). Сами пирамиды представляют также интерес с точки зрения истории

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ - ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА Во-первых, позвольте спросить: Откуда появляется движущая энергия? Что является источником, который все движет? Мы видим океан, который вздымается и опадает, текущие реки, ветер, дождь, град и снег,

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Два круговорота вещества и энергии на Земле Достигнув Земли, солнечная энергия способствует осуществлению на ней ряда процессов, без которых была бы невозможна органическая жизнь в ее высокой стадии. Особенно замечательны два круговорота веществ и энергии на Земле,

Из книги автора

Мощные источники энергии в ядрах радиогалактик Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин

Из книги автора

Из книги автора

Основные источники Физики Архимед. Сочинения. М.: Физматгиз, 1962.Бор Н. Избранные научные труды: В 2. М.: Наука, 1970–1971.Bohr N. Collected Works. Vol. 9 Nuclear Physics, 1929–1952. Amsterdam: North-Holland, 1986.Бронштейн М.П. Современное состояние релятивистской космологии // Успехи физических наук. 1931. № 11. С.

Из книги автора

4.5. Источники околоземных комет Из вышесказанного ясно, что в околоземном пространстве наблюдаются кометы, принадлежащие различным динамическим классам. Рассмотрим, что же известно в данный момент об источниках комет с такими разными орбитальными параметрами и о тех

Из книги автора

Источники гравитационного излучения – Возьмем две звезды, разгоним почти до скорости света и столкнем. Что произойдет? – Нехилый коллайдер получится… Из форума Слабость гравитационного излучения оставляет мало шансов для его регистрации. Где же искать подходящие

Из книги автора

2. Материальные источники В тексте обсуждается и утверждается, что искривление пространства-времени – это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании.

Что еще почитать