Релятивистская динамика. Энергия в релятивистской механике Формула полной энергии релятивистской частицы

Формула Е = тс 2 для релятивистской энергии позволяет дать новую, релятивистскую интерпретации массы частицы (материальной точки). Она показывает, что наличие у частицы энергии Е означает наличие у нее массы Е /с 2 , и наоборот, наличие массы т означает наличие энергии тс?. Таким образом, масса, которая в классической механике интерпретируется либо как мера инертности тела (второй закон Ньютона), либо как мера его гравитационного действия (закон всемирного тяготения), в релятивистской механике выступает в новой функции: это есть мера энергосодержания тела, независимо от его инертных или гравитационных свойств. В частности, любое тело обладает энергией даже в состоянии покоя: это его энергия покоя тщс 2 . Универсальность взаимосвязи массы и энергии проявляется в том, что «энергосодержание» тела включает в себя любой вид энергии, заключенной в теле, в том числе, например, внутриядерной энергии, освобождающейся при ядерном взрыве (что и подтверждается при расчетах взрывов атомных бомб).

Хотя мы часто употребляли понятия «материальная точка» или «частица», но нигде не использовали ни точечных свойств тела, ни «элементарность» частицы. Поэтому формула для релятивистской энергии применима и к любому сложному телу, состоящему из многих частиц, причем под скоростью и мы понимаем скорость его движения как целого, а под его релятивистской массой его массу как целого. И тогда очевидно, что релятивистская энергия тела всегда положительная величина, непосредственно связанная с его массой. В этой связи можно заметить, что в классической механике положительной является только кинетическая энергия тела, тогда как полная (сохраняющаяся) энергия кинетическая плюс потенциальная может быть и отрицательной.

Пусть механическая система как целое покоится, и пусть М 0 ее масса покоя. Если она состоит из свободно движущихся частиц, то ее релятивистская энергия равна сумме релятивистских энергий входящих в ее состав частиц. Совсем иную картину мы имеем в случае, когда частицы сложного тела (системы) взаимодействуют друг с другом. Тогда полная энергия Мд с 2 сложного тела содержит, помимо энергии покоя входящих в его состав частиц, их кинетическую энергию (они могут двигаться внутри замкнутой системы), а также энергию их взаимодействия друг с другом (пример энергия ядерного взаимодействия частиц, образующих ядро атома). Таким образом, энергия Mqc? тела не равна сумме Хд т 0 кС 2 , где тдд, - масса покоя к-ой частицы тела. Отсюда прямо следует, что масса Мо покоящегося тела не равна сумме масс покоя его составных частей: Мо ф Хд т 0?- Это означает, что в релятивистской динамике не выполняется закон сохранения массы. Это еще одно ее отличие от классической механики: масса сложного тела не равна сумме масс его частей. Вместе с тем релятивистская энергия замкнутой системы сохраняется, если принимать во внимание и энергию покоя системы. Если не учитывать во всех системах энергию покоя в составе полной энергии, то невозможно удовлетворить закону сохранения импульса и энергии во всех системах отсчета. Этот урок, преподнесенный нам релятивистской физикой, никак не предполагался в физике Ньютона.

Системы взаимодействующих частиц можно разделить на два типа: системы, которые могут самопроизвольно распадаться, и системы связанные, т. е. обладающие запасом прочности. Если система распадается, то ее релятивистская энергия частично переходит в кинетическую энергию освободившихся частиц; для этого, следовательно, необходимо Мдс 2 > Xa- или

ilio > Xa m 0 k, ~ тело может самопроизвольно распадаться лишь на части, сумма масс покоя которых меньше массы покоя тела. Напротив, если Мд энергией связи тела: Е св. Положительная величина

называется дефектом масс сложного тела.

Как видим, в релятивистской механике масса и энергия системы частиц зависят от ее состава и внутреннего состояния. В случае связанной (прочной) системы, например, атомного ядра, сумма масс покоя свободных протонов и нейтронов всегда больше массы покоя образованного из них ядра.

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела . Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри . Масса тела , как мы обнаружили, равна не , а . Этой массой снабдили тело его составные части, чья масса покоя была ; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,- во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой , не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой ; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой , и предположим, что что-то стряслось и оно распалось на две равные части, имеющие скорости и массы . Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса . Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию . Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как , то высвободившаяся энергия . Это уравнение было использовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,- иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и и были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, подсчитали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосредственно измерили (не будь формулы Эйнштейна, энергию измерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии и говорить с этих нор, что полная энергия объекта равна ? Во-первых, если бы нам были видны составные части с массой покоя внутри объекта , то можно было бы говорить, что часть массы есть механическая масса покоя составных частей, а другая часть - их кинетическая энергия, третья - потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри какие-то составные части. Например, распад -мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из , потому что он распадается порой и на !

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М. Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М. Масса тела М, как мы обнаружили, равна не 2m 0 , a 2m ω . Этой массой 2m ω снабдили тело его составные части, чья масса покоя была 2m 0 ; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,— во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой 2m 0 , не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой 2m 0 ; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой М, и предположим, что что-то стряслось и оно распалось на две равные части, имеющие скорости ω и массы m ω . Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса m 0 . Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию (mω — m 0)с 2 . Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как 2m ω =M, то высвободившаяся энергия Е = (М—2m 0)с 2 . Это уравнение было использовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,— иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и М и то были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если М распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, подсчитали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосредственно измерили (не будь формулы Эйнштейна, энергию измерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m 0 с 2 и говорить с этих пор, что полная энергия объекта равна mс 2 ? Во-первых, если бы нам были видны составные части с массой покоя то внутри объекта М, то можно было бы говорить, что часть массы М есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри М какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бесмысленно считать, что он состоит из 2π, потому что он распадается порой и на Зπ!

А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mс 2 тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m 0 с 2 , и говорим, что полная энергия частицы равна ее массе движения, умноженной на с 2 , а когда тело остановится, его энергия есть его масса в покое, умноженная на с 2 .

И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m 0 /√(1 - v 2 /c 2) очень редко употребляется на практике. Вместо этого незаменимыми оказываются два соотношения, которые легко доказать.

> Релятивистская кинетическая энергия

Изучите формулу для кинетической энергии релятивистской частицы . Узнайте, как определить релятивистскую кинетическую энергию, связь с импульсом, полная энергия.

В виде формулы релятивистская кинетическая энергия задается как: (m – масса покоя, v – скорость, c – скорость света).

Задача обучения

  • Сопоставьте классическую и кинетическую релятивистские энергии для объектов, чья скорость меньше или приближается к световой.

Основные пункты

  • В формуле видно, что энергия объекта близится к бесконечности, если скорость приближается к световой. Поэтому нельзя ускорить объект на границе.
  • Расчеты кинетической энергии проводят по формуле: E покоя = E 0 = mc 2 .
  • При низком скоростном показателе релятивистская кинетическая энергия может быть аппроксимирована классической. Поэтому полная энергия делится на энергию массы в состоянии покоя с добавлением традиционной кинетической.

Термины

  • Коэффициент Лоренца – фактор для определения степени временного замедления, сокращения длины и релятивистской массы перемещающегося объекта.
  • Классическая механика – все физические законы природы, характеризующие поведение обычного мира.
  • Специальная теория относительности: скорость света остается стабильной в любой системе отсчета.

Кинетическая энергия основывается на массе тела и скорости. Задается формулой: (m – масса, v – скорость тела).

Классическая кинетическая энергия связана с импульсом уравнением:

(р – импульс).

Если скорость объекта составляет примечательную часть световой, то для определения кинетической энергии нужно воспользоваться специальной теорией относительности. Здесь необходимо изменить выражение для линейного импульса. Формула:

p = mγv, где γ – коэффициент Лоренца:

Кинетическая энергия обладает связью с импульсом, поэтому релятивистское выражение отличается от классического:

Из формулы видно, что энергия объекта подходит к бесконечности, когда скорость приближается к световой. Поэтому нельзя ускорить объект на этой черте.

Математическим побочным результатом выступает уравнение эквивалентности массы-энергии. Тело в позиции покоя обязано обладать энергией:

Популярную связь между Эйнштейном, E = mc 2 и атомной бомбой отобразили на обложке журнала

E покоя = E 0 = mc 2 .

Общая формула для энергии объекта, не пребывающего в позиции покоя:

KE = mc 2 - m 0 c 2 (m – релятивистская масса объекта, а m 0 – масса объекта в состоянии покоя).

При низких скоростях релятивистская кинетическая энергия может аппроксимироваться классической. Это показывают на разложении Тейлора:

E к ≈ mc 2 (1 + 0.5 v 2 /с 2) - mc 2 = 0.5 mv 2 .

Выходит, что полную энергию можно поделить на энергию массы покоя с добавлением классический кинетической при небольших скоростных показателях.

Что еще почитать