Урок физики превращение энергии при гармонических колебаниях. Превращение энергии при колебательном движении. Вынужденные колебания. Резонанс. Превращение энергии при гармонических колебаниях

Рассмотрим превращение энергии при гармонических колебаниях для двух случаев: в системе нет трения; трение в системе есть. Превращение энергии в системах без трения. Сместив шарик, прикрепленный к пружине, вправо на расстояние хт, мы сообщаем колебательной системе запас потенциальной энергии: При движении шарика влево деформация пружины становится меньше и потенциальная энергия уменьшается. Но одновременно увеличивается скорость и, следовательно, растет кинетическая энергия. В момент прохождения шариком положения равновесия потенциальная энергия становится минимальной. Кинетическая же энергия достигает максимума. После прохождения положения равновесия скорость начинает уменьшаться. Следовательно, уменьшается и кинетическая энергия. Потенциальная же энергия снова растет. В крайней левой точке она достигает максимума, а кинетическая энергия становится равной нулю. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Это же самое можно проследить и на колебаниях маятника. Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической и потенциальной энергий: Кинетическая и потенциальная энергии периодически изменяются. Но полная механическая энергия замкнутой системы, в которой отсутствуют силы сопротивления, остается согласно закону сохранения энергии неизменной. Она равна либо потенциальной энергии в момент максимального отклонения от положения равновесия, либо же кинетической энергии в момент, когда тело проходит положение равновесия: Энергия колеблющегося тела прямо пропорциональна квадрату амплитуды колебаний координаты или квадрату амплитуды колебаний скорости Затухающие колебания. Свободные колебания груза, прикрепленного к пружине, или маятника являются гармоническими лишь в том случае, когда нет трения. Но силы трения, или, точнее, силы. сопротивления, хотя, может быть, и малые, всегда действуют на колеблющееся тело. Силы сопротивления совершают отрицательную работу и тем самым уменьшают механическую энергию системы. Поэтому с течением времени максимальные отклонения тела от положения равновесия становятся все меньше и меньше. В конце концов, после того как запас механической энергии окажется исчерпанным, колебания прекратятся совсем. Колебания при наличии сил сопротивления являются затухающими. График зависимости координаты тела от времени при затухающих колебаниях изображен на рисунке 63. Подобный график может вычертить само колеблющееся тело, например маятник. На рисунке 64 изображен маятник с песочницей. Маятник на равномерно движущемся под ним листе картона струйкой песка вычерчивает график зависимости координат от времени. Это простой метод временной развертки колебаний, дающий весьма полное представление о процессе колебательного движения. При небольшом сопротивлении затухание колебаний на протяжении нескольких периодов мало. Если же к нитям подвеса прикрепить лист плотной бумаги для увеличения силы сопротивления, то затухание станет значительным. В автомобилях применяются специальные амортизаторы для гашения колебаний кузова на рессорах при езде по неровной дороге. При колебаниях кузова связанный с ним поршень движется в цилиндре, заполненном жидкостью. Жидкость перетекает через отверстия в поршне, что приводит к появлению больших сил сопротивления и быстрому затуханию колебаний. Энергия колеблющегося тела при отсутствии сил трения остается неизменной. Если в системе есть силы сопротивления, то колебания являются затухающими.

Рассмотрим превращение энергии при гармонических колебаниях в двух случаях: в системе нет трения; в системе есть трение.

Превращения энергии в системах без трения. Смещая шарик, прикрепленный к пружине (см. рис. 3.3), вправо на расстояние х m , мы сообщаем колебательной системе потенциальную энергию:

При движении шарика влево деформация пружины становится меньше, и потенциальная энергия системы уменьшается. Но одновременно увеличивается скорость и, следовательно, возрастает кинетическая энергия. В момент прохождения шариком положения равновесия потенциальная энергия колебательной системы становится равной нулю (W п = 0 при х = 0). Кинетическая же энергия достигает максимума.

После прохождения положения равновесия скорость шарика начинает уменьшаться. Следовательно, уменьшается и кинетическая энергия. Потенциальная же энергия системы снова увеличивается. В крайней левой точке она достигает максимума, а кинетическая энергия становится равной нулю. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Нетрудно проследить за тем, что такие же превращения механической энергии из одного ее вида в другой происходят и в случае математического маятника.

Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической и потенциальной энергий колебательной системы:

Кинетическая и потенциальная энергии периодически изменяются. Но полная механическая энергия изолированной системы, в которой отсутствуют силы сопротивления, сохраняется (согласно закону сохранения механической энергии) неизменной. Она равна либо потенциальной энергии в момент максимального отклонения от положения равновесия, либо же кинетической энергии в момент, когда тело проходит положение равновесия:

Энергия колеблющегося тела прямо пропорциональна квадрату амплитуды колебаний координаты или квадрату амплитуды колебаний скорости (см. формулу (3.26)).

Свободные колебания груза, прикрепленного к пружине, или маятника являются гармоническими лишь в том случае, когда нет трения. Но силы трения, или, точнее, силы сопротивления окружающей среды, хотя, может быть, и малые, всегда действуют на колеблющееся тело.

Силы сопротивления совершают отрицательную работу и тем самым уменьшают механическую энергию системы. Поэтому с течением времени максимальные отклонения тела от положения равновесия становятся все меньше и меньше. В конце концов, после того как запас механической энергии окажется исчерпанным, колебания прекратятся совсем. Колебания при наличии сил сопротивления являются затухающими .

График зависимости координаты тела от времени при затухающих колебаниях изображен на рисунке 3.10. Подобный график может вычертить само колеблющееся тело, например маятник.

На рисунке 3.11 изображен маятник с песочницей. Маятник на равномерно движущемся под ним листе картона струйкой песка вычерчивает график зависимости своей координаты от времени. Это простой метод временной развертки колебаний, дающий достаточно полное представление о процессе колебательного движения. При небольшом сопротивлении затухание колебаний на протяжении нескольких периодов мало. Если же к нитям подвеса прикрепить лист плотной бумаги для увеличения силы сопротивления, то затухание станет значительным.

В автомобилях применяются специальные амортизаторы для гашения колебаний кузова при езде по неровной дороге. При колебаниях кузова связанный с ним поршень движется в цилиндре, заполненном жидкостью. Жидкость перетекает через отверстия в поршне, что приводит к появлению больших сил сопротивления и быстрому затуханию колебаний.

Энергия колеблющегося тела при отсутствии сил трения сохраняется неизменной.

Если на тела системы действуют силы сопротивления, то колебания являются затухающими.

Рассмотрим на примере колебаний груза на пружине, какие превращения энергии происходят в колебательной системе. Сначала рассмотрим случай, когда в системе нет трения. Первоначальное положение системы показано на следующем рисунке (а).

Выведем систему из положения равновесия, оттянем шарик вправо на расстояние Хm. На рисунке выше положение (б). При этом мы сообщим системе некоторую потенциальную энергию.

Формула потенциальной энергии

Потенциальная энергия будет вычисляться по следующей формуле:

Wп = (k*(Xm)^2)/2.

Вся энергия системы будет равняться потенциальной энергии.

После этого мы отпустим тело. Шарик начнет движение влево. Деформация пружины будет уменьшаться. При этом будет становиться меньше и потенциальная энергия. Но из закона сохранения энергии мы знаем, что она не может исчезать бесследно, она должна переходить в какой-то другой вид энергии.

Заметно, что после того как мы отпустили шарик, его скорость начала увеличиваться, а следовательно, будет возрастать и кинетическая энергия. В момент, когда шарик будет проходить положение равновесия, его скорость будет максимальной, а, следовательно, кинетическая энергия тоже будет максимальной. При этом, так как деформация пружины равняется нулю, то потенциальной энергии вообще не будет.

После того как шарик пройдет положение равновесия, его скорость снова начнет уменьшаться. А значит, будет уменьшаться и кинетическая энергия его движения. Так как в системе снова появится деформация пружины, она будет растягиваться, то начнет увеличиваться потенциальная энергия.

Дойдя до крайнего левого положения (в), потенциальная энергия достигнет своего максимального значения. А скорость груза в этой точке станет равной нулю. То есть кинетическая энергия будет равняться нулю.

Превращение энергии при гармонических колебаниях

Мы видим, что полная энергия системы в любой момент времени есть сумма потенциальной энергии системы и кинетической энергии системы.

W = Wк+Wп = (m*V^2)/2 +(k*x^2)/2.

Такие же превращения энергии будут происходить и в математическом маятнике. Как мы видим, полная механическая энергия замкнутой системы будет сохраняться постоянной. Хотя при этом значения кинетической и потенциальной энергии могут меняться, но в сумме они всегда будут давать одинаковое число.

Полная механическая энергия системы равняется потенциальной энергии тела в начальной момент, либо кинетической энергии тела, при прохождении им положения равновесия.

W = (m*V^2)/2 = (k*x^2)/2.

Если в системе будет присутствовать трение, то часть энергии будет теряться на преодоление сил трения. При этом с течение времени амплитуда колебаний будет уменьшаться, пока тело совсем не остановится. Данные колебания будут затухающими.

53. Превращение энергии при гармонических колебаниях. Вынуж­денные колебания. Резонанс.

При отклонении математического маятника от положения равновесия его потенциальная энергия увеличивается, т.к. увеличивается расстояние до Земли. При движении к положению равновесия скорость маятника возрастает, и увеличивается кинетическая энергия, за счет уменьшения запаса потенциальной. В положении равновесия кинетическая энергия – максимальная, потенциальная – минимальна. В положении максимального отклонения – наоборот. С пружинным – то же самое, но берется не потенциальная энергия в поле тяготения Земли, а потенциальная энергия пружины. Свободные колебания всегда оказываются затухающими, т.е. с убывающей амплитудой, т.к. энергия тратится на взаимодействие с окружающими телами. Потери энергии при этом равны работе внешних сил за это же время. Амплитуда зависит от частоты изменения силы. Максимальной амплитуды она достигает при частоте колебаний внешней силы, совпадающей с собственной частотой колебаний системы. Явление возрастания амплитуды вынужденных колебаний при описанных условиях называется резонансом. Так как при резонансе внешняя сила совершает за период максимальную положительную работу, то условие резонанса можно определить как условие максимальной передачи энергии системе.

54. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения. Звуковые волны. Скорость звука. Ультразвук

Возбуждение колебаний в одном месте среды вызывает вынужденные колебания соседних частиц. Процесс распространении колебаний в пространстве называется волной. Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными волнами. Волны, в которых колебания происходят вдоль направления распространения волны, называются продольными волнами. Продольные волны могут возникать во всех средах, поперечные – в твердых телах под действием сил упругости при деформации или сил поверхностного натяжения и сил тяжести. Скорость распространения колебаний v в пространстве называется скоростью волны. Расстояние l между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны. Зависимость длины волны от скорости и периода выражается как , или же . При возникновении волн их частота определяется частотой колебаний источника, а скорость – средой, где они распространяются, поэтому волны одной частоты могут иметь в разных средах различную длину. Процессы сжатия и разрежения в воздуха распространяются во все стороны и называются звуковыми волнами. Звуковые волны являются продольными. Скорость звука зависит, как и скорость любых волн, от среды. В воздухе скорость звука 331 м/с, в воде – 1500 м/с, в стали – 6000 м/с. Звуковое давление – дополнительно давление в газе или жидкости, вызываемое звуковой волной. Интенсивность звука измеряется энергией, переносимой звуковыми волнами за единицу времени через единицу площади сечения, перпендикулярного направлению распространения волн, и измеряется в ваттах на квадратный метр. Интенсивность звука определяет его громкость. Высота звука определяется частотой колебаний. Ультразвуком и инфразвуком называют звуковые колебания, лежащие вне пределов слышимости с частотами 20 килогерц и 20 герц соответственно.

55.Свободные электромагнитные колебания в контуре. Превраще­ние энергии в колебательном контуре. Собственная частота коле­баний в контуре.

Электрическим колебательным контуром называется система, состоящая из конденсатора и катушки, соединенных в замкнутую цепь. При подключении катушки к конденсатору в катушке возникает ток и энергия электрического поля превращается в энергию магнитного поля. Конденсатор разряжается не мгновенно, т.к. этому препятствует ЭДС самоиндукции в катушке. Когда же конденсатор разрядится полностью, ЭДС самоиндукции будет препятствовать убыванию тока, и энергия магнитного поля будет переходить в энергию электрического. Ток, возникающий при этом, зарядит конденсатор, причем знак заряда на обкладках будет противоположным первоначальному. После чего процесс повторяется до тех пор, пока вся энергия не будет затрачена на нагревание элементов цепи. Таким образом, энергия магнитного поля в колебательном контуре переходит в энергию электрического и обратно. Для полной энергии системы возможно записать соотношения: , откуда для произвольного момента времени . Как известно, для полной цепи . Полагая, что в идеальном случае R»0, окончательно получим , или же . Решением этого дифференциального уравнения является функция , где . Величину w называют собственной круговой (циклической) частотой колебаний в контуре.


Закона, а на языке более уважительном и человечном. И вместо “вы обязаны”, будем говорить: “давайте попробуем”». Школьный курс по основам православной культуры является предметом культурологическим (а не религиозным), и поэтому его нужно преподавать в школе так, как необходимо преподавать математику. Так считает митрополит Смоленский и Калининградский Кирилл (Гундяев). Реализовывать эту в...

Раза. В силу специфичности информации схемы определения количества информа­ции, связанные с ее содержательной стороной, оказы­ваются не универсальными. Универсальным оказывается алфавитный подход к измерению количества информации. В этом подходе сообщение, представленное в какой-либо знаковой системе, рассматривается как совокупность сообще­ний о том, что заданная позиция в последовательнос­ти...

Полезно учителю при подготовке рассказа на уроке. В данной публикации сделана попытка выделить тот самый минимум, который ученику необходимо включить в свой ответ на экзамене. Примечания для учеников При ответе надо быть готовым к дополнительным вопросам об обосновании тех или иных утверждений. Например, каковы максимальное и минимальное значения 8-битного целого числа со знаком и почему их...

Список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие...

Превращения энергии при гармонических колебаниях.

При колебаниях математического маятника полная энергия системы складывается из кинœетической энергии материальной точки (шарика) и потенциальной энергии материальной точки в поле сил тяготения. При колебаниях пружинного маятника полная энергия складывается из кинœетической энергии шарика и потенциальной энергии упругой деформации пружины:

При прохождении положения равновесия и в первом и во втором маятнике кинœетическая энергия шарика достигает максимального значения, потенциальная энергия системы равна нулю. При колебаниях происходит периодическое превращение кинœетической энергии в потенциальную энергию системы, полная энергия системы при этом остается неизменной, если отсутствуют силы сопротивления (закон сохранения механической энергии). К примеру, для пружинного маятника можно записать:

В колебательном контуре (рис.14.1.с) полная энергия системы складывается из энергии заряженного конденсатора (энергии электрического поля )и энергии катушки с током (энергии магнитного поля . Когда заряд конденсатора максимален, ток в катушке равен нулю (см. формулы 14.11 и 14.12), энергия электрического поля конденсатора максимальна, энергия магнитного поля катушки равна нулю. В момент времени, когда заряд конденсатора равен нулю, ток в катушке максимален, энергия электрического поля конденсатора равна нулю, энергия магнитного поля катушки максимальна. Также как и в механических осцилляторах, в колебательном контуре происходит периодическое превращение энергии электрического поля в энергию магнитного поля, полная энергия системы при этом остается неизменной, если отсутствует активное сопротивление R . Можно записать:

. (14.15)

В случае если в процессе колебаний на математический или на пружинный маятник действуют внешние силы сопротивления, а в цепи колебательного контура есть активное сопротивление R , энергия колебаний, а значит, и амплитуда колебаний будут уменьшаться. Такие колебания называются затухающими колебаниями , на рисунке 14.2 приведен график зависимости колеблющейся величины Х от времени.

Рис. 14.3

§ 16. Переменный электрический ток.

С источниками постоянного тока мы уже знакомы, знаем, для чего они нужны, знаем законы постоянного тока. Но гораздо большее практическое значение в нашей жизни имеет переменный электрический ток, который используется в быту, на производстве и других областях человеческой деятельности. Сила тока и напряжение переменного тока (к примеру, в осветительной сети нашей квартиры) меняются со временем по гармоническому закону. Частота промышленного переменного тока – 50Гц. Источники переменного тока разнообразны по своему устройству и характеристикам. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. На рис.14.3 рамка вращается вокруг вертикальной оси ОО , перпендикулярной силовым линиям магнитного поля, с постоянной угловой скоростью . Угол α между вектором и нормалью меняется по закону , магнитный поток через поверхность S , ограниченную рамкой, меняется со временем, в рамке возникает ЭДС индукции.

Что еще почитать