Что такое солнечная энергия, и где она используется? Солнце как самый альтернативный экологически чистый вид энергии

На сегодняшний день проблема расхода энергии стоит достаточно остро - ресурсы планеты не бесконечны и за время своего существования человечество изрядно опустошило то, что было дано природой. На данный момент активно проводится добыча угля и нефти, запасы которых с каждым днем становятся все меньше. позволила человечеству сделать невероятный шаг в будущее и использовать атомную энергию, привнеся вместе с этим благом огромную опасность для всей окружающей среды.

Не менее остро стоит вопрос экологический - активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия.

Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нем и пойдет далее речь.

Что в этом привлекательного

Прежде чем переходить к конкретным примерам, выясним, чем же так сильно заинтересовал этот вид добычи энергии исследователей всего мира. Основным его достоянием можно назвать неисчерпаемость. Несмотря на многочисленные гипотезы, вероятность того, что звезда вроде Солнца погаснет в ближайшее время, крайне мала. Значит, перед человечеством открыта возможность получать чистую энергию совершенно естественным путем.

Второе несомненное преимущество использования энергии Солнца на Земле заключается в экологичности этого варианта. Воздействие на окружающую среду при таких условиях будет нулевым, что в свою очередь обеспечивает всему миру куда более светлое будущее, нежели то, которое открывается при постоянной добыче ограниченных подземных ресурсов.

Наконец, следует уделить отдельное внимание тому факту, что Солнца представляет наименьшую опасность для самого человека.

Как на самом деле

Теперь перейдем к сути. Под несколько поэтичным названием «солнечная энергия» скрывается на самом деле преобразование радиации в электричество при помощи специально разработанных технологий. Данный процесс обеспечивают фотоэлектрические элементы, которые человечество чрезвычайно активно использует в своих целях, причем достаточно успешно.

Солнечная радиация

Так уж сложилось исторически, что существительное «радиация» вызывает у человека скорее негативные ассоциации, нежели позитивные в связи с теми техногенными катастрофами, которые миру удалось пережить на своем веку. Тем не менее технология использования энергии Солнца на Земле предусматривает работу именно с ней.

По сути, данный вид радиации представляет собой электромагнитное излучение, диапазон которого находится в промежутке от 2,8 до 3,0 мкм.

Столь успешно используемый человечеством солнечный спектр состоит на самом деле из трех видов волн: ультрафиолетовых (примерно 2%), примерно 49% составляют световые волны и, наконец, еще столько же приходится на Солнечная энергия имеет небольшое количество других составляющих, однако роль их столь незначительна, что особого воздействия на жизнь Земли они не имеют.

Количество солнечной энергии, попадающей на Землю

Теперь, когда состав используемого на благо человечества спектра определен, следует отметить еще одну важную особенность данного ресурса. Использование солнечной энергии на Земле кажется весьма перспективным еще и потому, что она доступна в довольно большом количестве при практически минимальных затратах на переработку. Общее количество излучаемой звездой энергии чрезвычайно велико, однако до поверхности Земли доходит примерно 47%, что равно семистам квадриллионам киловатт-часов. Для сравнения отметим, что всего один киловатт-час сможет обеспечить десятилетнюю работу лампочки мощностью в сто ватт.

Мощность излучения Солнца и использование энергии на Земле, конечно, зависит от целого ряда факторов: климатических условий, угла падения лучей на поверхность, времени года и географического положения.

Когда и сколько

Несложно догадаться, что суточное количество солнечной энергии, попадающей на поверхность Земли, постоянно меняется, поскольку напрямую зависит от положения планеты по отношению к Солнцу и движения самого светила. Давно известен тот факт, что в полдень излучение максимально, в то время как утром и вечером количество достигающих поверхности лучей значительно меньше.

С уверенностью можно говорить о том, что использование энергии Солнца будет наиболее продуктивно в регионах, максимально приближенных к экваториальной полосе, поскольку именно там разница между высшими и низшими показателями минимальна, что говорит о максимальном количестве радиации, достигающей поверхности планеты. К примеру, на территории пустынных африканских участков годовое количество излучения достигает в среднем 2200 киловатт-часов, в то время как на территории Канады или, к примеру, Центральной Европы показатели не превышают 1000 киловатт-часов.

Солнечная энергетика в истории

Если мыслить максимально широко, попытки «приручить» великое светило, согревающее нашу планету, начались еще в глубокой древности во времена язычества, когда каждая стихия была воплощена отдельным божеством. Однако, конечно, тогда об использовании солнечной энергии даже речи быть не могло - в мире царила магия.

Тема использования энергии Солнца на Земле стала активно подниматься только в конце XIV - начале ХХ века. Настоящий прорыв в науке был совершен в 1839 году Александром Эдмоном Беккерелем, которому удалось стать первооткрывателем фотогальванического эффекта. Изучение данной темы значительно усилилось, и уже через 44 года Чарльз Фриттс смог сконструировать первый в истории модуль, в основе которого был позолоченный селен. Такое использование энергии Солнца на Земле давало небольшое количество высвобождаемого электричества - общее количество выработки тогда составило не более 1%. Тем не менее для всего человечества это стало настоящим прорывом, открывшим новые горизонты науки, о которых ранее не приходилось даже мечтать.

Весомый вклад в развитие солнечной энергетики внес в свое время сам Альберт Эйнштейн. В современном мире имя ученого чаще связывают с его знаменитой теорией относительности, однако на самом деле Нобелевской премии он был удостоен именно за изучение

До наших дней технология использования энергии Солнца на Земле переживает то стремительные взлеты, то не менее стремительные падения, однако эта отрасль знаний постоянно пополняется новыми фактами, и можно надеяться, что уже в обозримом будущем перед нами откроется дверь в совершенно новый мир.

Природа против нас

О достоинствах использования энергии Солнца на Земле мы уже говорили. Теперь обратим внимание на недостатки данного метода, которых, к сожалению, не меньше.

Из-за прямой зависимости от географического положения, климатических условий и движения Солнца выработка солнечной энергии в достаточном количестве требует огромных территориальных затрат. Суть заключается в том, что чем больше будет площадь потребления и переработки солнечной радиации, тем большее количество экологически чистой энергии мы получим на выходе. Размещение же таких огромных систем требует большого количества свободной площади, что вызывает определенные затруднения.

Еще одна проблема, касающаяся использования энергии Солнца на Земле, заключается в прямой зависимости от времени суток, поскольку выработка ночью будет нулевой, а в утреннее и вечернее время крайне незначительной.

Дополнительным фактором риска является сама погода - резкие смены условий могут крайне негативно сказаться на работе такого рода системы, поскольку вызывают затруднения в отладке необходимой мощности. В некотором смысле ситуации с резкой сменой количества поглощения и выработки могут быть опасными.

Чисто, но дорого

Использование солнечной энергии на Земле затруднительно на данный момент из-за ее дороговизны. Фотоэлементы, необходимые для осуществления основных процессов, имеют достаточно высокую стоимость. Конечно, положительные стороны использования такого рода ресурса делают его окупаемым, однако с экономической точки зрения на данный момент не приходится говорить о полной окупаемости денежных затрат.

Тем не менее, как показывает тенденция, цена на фотоэлементы постепенно падает, так что со временем данная проблема может быть полностью решена.

Неудобство процесса

Использование Солнца как источника энергии представляет затруднение еще и потому, что данный способ обработки ресурсов довольно трудоемок и неудобен. Потребление и переработка радиации напрямую зависят от чистоты пластин, которую обеспечить довольно проблематично. Кроме того, крайне негативно на процессе сказывается и нагревание элементов, которое можно предотвратить только использованием мощнейших систем охлаждения, что требует дополнительных материальных затрат, причем немалых.

Кроме того, пластины, используемые в гелиоколлекторах, после 30 лет активной работы постепенно приходят в негодность, а о стоимости фотоэлементов говорилось ранее.

Экологический вопрос

Ранее говорилось, что использование такого рода ресурса сможет избавить человечество от достаточно серьезных проблем с окружающей средой в будущем. Источник ресурсов и конечный продукт действительно экологически максимально чисты.

Тем не менее использование энергии Солнца, принцип работы гелиоколлекторов заключается в применении специальных пластин с фотоэлементами, для изготовления которых требуется масса ядовитых веществ: свинца, мышьяка или калия. Само их использование вреда окружающей среде не приносит, однако, учитывая ограниченный срок их эксплуатации, со временем утилизация пластин может стать серьезной проблемой.

Для ограничения негативного воздействия на экологию производители постепенно переходят на тонкопленочные пластины, которые имеют более низкую стоимость и менее пагубно сказываются на окружающей среде.

Способы преобразования радиации в энергию

Фильмы и книги о будущем человечества дают нам почти всегда примерно одинаковую картину данного процесса, которая, по сути, может существенно отличаться от действительности. Существует несколько способов преобразования.

Самым распространенным можно назвать уже описанное ранее задействование фотоэлементов.

В качестве альтернативы человечество активно использует гелиотермальную энергетику, основанную на нагреве специальных поверхностей, который позволяет при должном направлении полученной температуры нагревать воду. Если упростить данный процесс максимально, его можно сравнить с баками, которые используются для летнего душа в домах частного сектора.

Еще одним способом применения излучения для выработки энергии является «солнечный парус», который может действовать только в Такого рода система преобразует радиацию в

Проблема отсутствия выработки в ночное время суток частично решается солнечными аэростатными электростанциями, работа которых продолжается благодаря аккумуляции выделяемой энергии и длительности процесса остывания.

Мы и солнечная энергия

Ресурсы энергии солнца и ветра на Земле используются довольно активно, хотя мы часто и не замечаем этого. Ранее уже упоминалось простонародное нагревание воды в летнем душе. По сути, чаще всего солнечная энергия используется именно для этих целей. Тем не менее есть масса других примеров: почти в каждом магазине осветительной техники можно найти накопительные лампочки, которые могут работать без электрического тока даже ночью благодаря энергии, аккумулированной за день.

Установки на основе фотоэлементов активно используются на всевозможных насосных станциях и вентиляционных системах.

Вчера, сегодня, завтра

Один из важнейших ресурсов для человечества - солнечная энергия, и перспективы ее использования чрезвычайно велики. Данная отрасль активно финансируется, расширяется и совершенствуется. Сейчас солнечная энергетика максимально развита в США, где некоторые регионы используют ее как полноценный альтернативный источник питания. Так же электростанции такого типа работают в Другие же страны давно взяли курс на данный вид получения электроэнергии, что в скором времени, возможно, решит проблему загрязнения окружающей среды.

Жизнь современного человека просто немыслима без энергии. Отключение электроэнергии представляется катастрофой, человек уже не мыслит жизнь без транспорта, а приготовление, к примеру, пищи на костре, а не на удобной газовой или электрической плите - это уже из разряда хобби.

До сих пор мы используем для выработки энергии органическое топливо (нефть, газ, уголь). Но их запасы на нашей планете ограничены, и не сегодня-завтра наступит день, когда они иссякнут. Что же делать? Ответ уже есть - искать другие источники энергии, нетрадиционные, альтернативные, запас которых просто неисчерпаем.

К таким альтернативным источникам энергии относятся солнце и ветер.

Использование солнечной энергии

Солнце - мощнейший поставщик энергии. Что-то мы используем в силу наших физиологических особенностей. Но миллионы, миллиарды киловатт уходят впустую и исчезают с наступлением темноты. Каждую секунду Солнце дарит Земле 80 тысяч миллиардов киловатт. Это в несколько раз больше, чем вырабатывают все электростанции мира.

Только представьте, какие выгоды принесет человечеству использование солнечной энергии:

. Бесконечность по времени . Ученые предсказывают, что Солнце не погаснет еще в течение нескольких миллиардов лет. А это значит, что хватит и на наш век и для наших дальних потомков.

. География . На нашей планете нет мест, где не светило бы солнце. Где-то ярче, где-то тусклее, но Солнце есть везде. А значит не нужно будет окутывать Землю бесконечной паутиной проводов, пытаясь доставить электроэнергию в отдаленные уголки планеты.

. Количество . Энергии солнца хватит на всех. Даже если кто-то начнет безразмерно запасать такую энергию впрок, это ничего не изменит. Хватит и чтобы батарейки зарядить, и на пляже позагорать.

. Экономическая выгода . Уже не нужно будет тратиться на покупку дров, угля, бензина. Бесплатный солнечный свет будет отвечать за работу водоснабжения и автомобиля, кондиционера и телевизора, холодильника и компьютера.

. Экологически выгодно . Уйдет в прошлое тотальная вырубка лесов, не нужно будет топить печи, строить очередные "чернобыли" и "фукусимы", жечь мазут и нефть. Зачем прикладывать столько сил к уничтожению природы, когда в небе есть прекрасный и неиссякаемый источник энергии - Солнце.

К счастью, это не мечты. По оценкам ученых, уже к 2020 году 15% электроэнергии в Европе будет обеспечиваться за счет солнечного света. И это только начало.

Где используют солнечную энергию

. Солнечные батареи . Батареи, установленные на крыше дома, уже никого не удивляют. Поглощая энергию солнца, они преобразуют ее в электрическую. В Калифорнии, например, любой проект нового дома подразумевает обязательное использование солнечной батареи. А в Голландии город Херхюговард называют "городом Солнца", потому что здесь все дома оснащены солнечными батареями.

. Транспорт .

Уже сейчас все космические корабли во время автономного полета обеспечивают себя электричеством за счет энергии солнца.

Автомобили на солнечных батареях. Первая модель такого автомобиля была представлена еще в 1955 году. А уже в 2006 году французская компания Venturi наладила серийный выпуск "солнечных" автомобилей. Характеристики его пока скромны: всего 110 километров автономного хода и скорость не выше 120 км/ч. Но практически все мировые лидеры автомобильной промышленности разрабатывают свои версии экологически чистых авто.

. Солнечные электростанции .

. Гаджеты . Уже сейчас есть зарядки для многих устройств, которые работают от солнца.

Виды солнечной энергии (солнечные электростанции)

В настоящее время разработано несколько видов солнечных электростанций (СЭС):

. Башенные . Принцип работы прост. Огромное зеркало (гелиостат) поворачивается вслед за солнцем и направляет солнечные лучи на теплоприемник, заполненный водой. Далее все происходит как в обычной ТЭЦ: вода закипает, превращается в пар. Пар крутит турбину, которая задействует генератор. Последний и вырабатывает электричество.

. Тарельчатые . Принцип работы схож с башенными. Отличие заключается в самой конструкции. Во-первых, используется не одно зеркало, а несколько круглых, похожих на огромные тарелки. Зеркала устанавливают радиально, вокруг приемника.

Каждая тарельчатая СЭС может иметь сразу несколько подобных модулей.

. Фотовольтаические (использующие фотобатареи).

. СЭС с параболоцилиндрическим концентратором . Огромное зеркало в форме цилиндра, где в фокусе параболы установлена трубка с теплоносителем (чаще всего используют масло). Масло разогревается до нужной температуры и отдает тепло воде.

. Солнечно-вакуумные . Участок земли закрывают стеклянной крышей. Воздух и почва под ней нагреваются сильнее. Специальная турбина гонит теплый воздух к приемной башне, возле которой установлен электрогенератор. Электричество вырабатывается за счет разницы температур.

Использование энергии ветра

Еще один вид альтернативного и возобновляемого источника энергии - ветер. Чем сильнее ветер, тем большее количество кинетической энергии он вырабатывает. А кинетическую всегда можно преобразовать в механическую или электрическую энергию.

Механическую энергию, получаемую за счет ветра, используют уже давно. Например, при помоле зерна (знаменитые ветряные мельницы) или перекачивания воды.

Энергию ветра используют также:

В ветряных установках, которые вырабатывают электричество. Лопасти заряжают аккумулятор, от которого ток подается в преобразователи. Здесь постоянный ток преобразуется в переменный.

Транспорт. Уже сейчас есть автомобиль, который едет за счет энергии ветра. Специальная ветровая установка (кайт) позволяет двигаться и водным судам.

Виды ветряной энергии (ветряные электростанции)

. Наземные - самый распространенный вид. Такие ВЭС устанавливают на холмах или возвышенностях.

. Шельфовые . Их строят на мелководье, в значительном удалении от берегов. Электричество поступает на сушу по подводным кабелям.

. Прибрежные - устанавливают на некотором удалении от моря или океана. Прибрежные ВЭС используют силу бризов.

. Плавающие . Первый плавающий ветрогенератор был установлен в 2008 году недалеко от берегов Италии. Генераторы устанавливают на специальных платформах.

. Парящие ВЭС размещают на высоте на специальных подушках, выполненных из невоспламеняемых материалов и наполненных гелием. Электричество на землю подается по канатам.

Перспективы и развитие

Самые серьезные перспективные планы по использованию энергии солнца ставит перед собой Китай, который к 2020 году планирует стать мировым лидером в этой области. Страны ЕЭС разрабатывают концепцию, которая позволит получать до 20% электроэнергии из альтернативных источников. Американское Министерство энергетики называет меньшую цифру - к 2035 году до 14%. Есть СЭС и в России. Одна из самых мощных установлена в Кисловодске.

Что касается использования энергии ветра, то приведем некоторые цифры. Европейская Ассоциация ветровой энергетики опубликовала данные, которые показывают, что ветроэнергетические установки обеспечивают электричеством многие страны мира. Так, в Дании, за счет таких установок получают 20% потребляемой электроэнергии, в Португалии и Испании - 11%, в Ирландии - 9%, в Германии - 7%.

В настоящее время ВЭС установлены более чем в 50 странах мира, а их мощность растет из года в год.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Сегодня достаточно остро стоит вопрос обеспечения человечества энергоресурсами. Все знают, что ученые давно бьются над поиском альтернативных источников. Печально, что за последние годы на бытовом уровне явного прорыва в этой отрасли не произошло. Нашим людям недоступны солнечные технологии. Человечество нашло много нетрадиционных способов получения энергии: геотермальные станции, волновые и приливные электростанции, гидроэлектростанции, ветряки, водородная и космическая энергетика, биотопливо и даже гроза. Это неполный список находок человечества.

Второе место альтернативной энергетики

Второе место после ветряков, по совокупности достоинств и недостатков заняла – энергия солнца. Бесконечный источник, который всегда оставался у нас перед глазами, правда эффективно использовать его мы пока не научились. На практике кремниевые батареи способны продемонстрировать не более 22% коэффициента полезного действия. Они покажут КПД на уровне 75-80%, но применяются только как отопительные элементы. Плоские вакуумные коллекторы более требовательны к условиям использования, вакуум тяжелей удержать в такой большой системе, чувствительной к деформациям корпуса.

Хотя нас больше всего интересует использование этого источника в отоплении. Многие не против обогреть свой дом за счёт природной энергии, а не за счёт кошелька. Тут нас и ожидает самое неприятное. Стоимость столь высока, что альтернатива перестает быть заманчивой.

Поэтому, предлагаю взглянуть на эту проблему, с привычной для нашего человека стороны. А именно посмотреть, как можно погреться, не выкладывая заоблачные суммы. Сложно теперь понять, кто первый придумал использовать пиво именно так, но воздушные коллекторы из пивных банок сейчас конструируют в Америке, Европе да и вообще по всему миру. Их оснащают термостатом, микроконтроллером и дополнительным наддувом. В вашем исполнении он будет нужного размера и гораздо меньшей стоимости. Хотя, если пить пиво специально, то в последнем я не уверен.

Панели своими руками

Устройства из алюминиевых банок

Для создания первой батареи не нужно быть опытным мастером. Энергию солнца вы все равно сможете поймать. Для этого понадобится некоторое количество пивных банок, несколько квадратных метров ДСП, приблизительно столько же утеплителя и силиконовый клей.

Торцы банок аккуратно вскрывают по рантику. При желании зачищают наружную поверхность для лучшей адгезии и склеивают трубы необходимой длины. После они вклеиваются рядами в короб, размеры которого мастеру подскажет фантазия и красятся в чёрный цвет. Желательно термостойкой краской.

Все внутренние поверхности утепляются. Советуем использовать экструдированный пенополистирол, впоследствии окрашенный чёрной краской. А с утеплителем экспериментируйте. Сами трубы, в итоге должны расположиться вертикально, а верхние и нижние торцы, соединиться между собой, как регистры батареи.

Коллектор из алюминиевых банок своими руками

Вверху и внизу делают патрубки подачи, приема воздуха, которые нужно будет завести в ваше жилище. На вход поставьте маленький кулер, а на горячий выход слегка модернизированный автомобильный термостат или применить другой способ терморегуляции. Практика доказывает, что он может стать неплохим подспорьем для вашей отопительной системы. Главное – это качественная, герметичная сборка и расположение батареи. С лицевой, закройте короб стеклом, а лучше поликарбонатом. По расчётам специалистов, необходимо 15 квадратных метров коллекторов, для обогрева дома размером в 100 квадратов. Подобная чудо-альтернатива значительно уступит промышленным образцам, но всё же…

Параболо – концентрический зеркальный концентратор

В Европе их используют, ограничиваясь всего лишь перфорированной поверхностью алюминиевых сплавов.

Стоимость таких обогревателей велика из-за больших размеров и дорогих материалов. Поэтому рассматривать самодельные плоские теплообменники не стоит. Следующий вариант заинтересует загородных жителей. Отличие его радикально практически во всём. По сути, это параболо-концентрический зеркальный концентратор энергии солнца. Но главная выгода, заключается в применяемых материалах. Концентратор – это выгнутое в одной плоскости зеркало, концентрирующее лучи солнца в определённой точке. Здесь применяются три хитрости.



Материал зеркала, размер отражающей поверхности и тепловой аккумулятор. Пугающее изогнутое зеркало, оказывается изготовлено из зеркальной пленки. Зеркальная пленка наклеивается на вогнутую в виде желоба поверхность. Основанием для зеркала, стоит выбрать тот же пресловутый пенополистирол.



А в качестве несущих конструкций, выступят различные материалы: от древесины до металла. Изготовляется необходимое количество зеркальных сегментов, которые крепятся на несущие каркасы.



В каком-то смысле, вся конструкция напоминает детские качели, где вместо сиденья выступают зеркала, а на оси располагается трубопровод – теплообменник. Поскольку это загородное решение, размеры здесь могут быть внушительные.

Солнечный концентратор из спутниковой тарелки

Водные солнцеуловители

Ряд подобных устройств располагается вдоль движения солнца. Зеркало фокусируется в одну линию, откуда теплоноситель и заберёт питание. Теплоносителем будет обыкновенная вода, которая бежит по тонкостенным трубам, идущим в несколько рядов. Используйте нержавеющие или обычные тонкостенные стальные трубы нужного диаметра. При таком серьёзном подходе в этой системе не обойтись, без габаритного аккумулятора тепла.


Здесь существуют готовые решения, но и полёт фантазии приветствуется. К примеру, – “бассейн” на несколько кубов, изготовленный из пенопласта и деревянных опор. Внутренняя поверхность выстилается плотной тепличной пленкой. А прочность бортов рассчитывают на удержание нескольких кубов воды. Из подобных материалов устраивают и крышу закрывающую этот мини бассейн, в форме пирамиды.

Подобная простота конструкции в купе с незамысловатыми материалами, обеспечивают высокую ремонтопригодность. И замену отслуживших свой срок деталей. Стоимость тоже будет значительно отличаться. Разместить такое хранилище тепла лучше на открытом пространстве, это обеспечит легкий доступ в случае необходимости.

Зеркало на несущий конструкции, должно иметь возможность поворота по вертикали. В этом случае концентратор следит за светилом круглый год. Трубопровод включается в общую систему отопления для экономии средства.

Солнечный вакуумный коллектор

Далее ставки начинают повышаться. Речь к сожалению идёт о цене. Стоимость их довольно высока, хотя и КПД тоже достаточно большой. Его невозможно сделать самому, потому что в производстве используется высокопрочное боросиликатное стекло с пониженным содержанием металла.

Для контроля за вакуумом используется бариевый газопоглотитель. Если герметичность не нарушена, то трубка имеет серебристый цвет, если же она побелела, значит нарушена целостность. Вакуумные коллекторы менее остальных зависят от погодных условий, поскольку тепловой канал отделен от атмосферы вакуумом. А вакуум как известно, отличный теплоизолятор. В плохую погоду они поглощают инфракрасное излучение, проходящее сквозь облака. Ещё один плюс в пользу такой технологии.

Виды вакуумных коллекторов

Их существует несколько, некоторые из них более удачной конструкции, но они дороже. Самым удачным считается коллектор с перьевой трубкой и прямоточным тепловым каналом. Принцип устройства во всех случаях приблизительно одинаков. Колба представляет собой вытянутый, тонкий термос, с вакуумом между его стенками. На внутреннее стекло наносится высокоабсорбирующее покрытие, а внутри помещается тепловая трубка с теплоносителем.

Теплоносители принципиально отличаются. В одном случае, это легко испаряющаяся жидкость, перенос тепла происходит посредством испарения и конденсации. С прямоточным каналом, теплоноситель протекает по каждой из тепловых трубок, перенося и отдавая энергию. Основной недостаток – высокая цена и сложность в ремонте. В случае ремонта некоторых вакуумных коллекторов, из гелиосистемы придётся сливать теплоноситель. Разница кпд в зависимости от производителя бывает довольно значительной и может быть даже двукратной.

С вакуумными трубками собрать систему проще, поскольку основной элемент готов. Остаётся обеспечить контакт медного поглотителя с теплоносителем всей системы, а батареи из вакуумных трубок в безопасном кожухе поместить на освещённое место. Конечно сборку и монтаж большой системы лучше доверить специалистам. Гелиосистема с такими элементами часто перегревается и закипает и за ней нужен определённый контроль. Если ваше основное отопление имеет большой литраж и перегрева не будет, вспомогательный модуль попробуйте собрать самому.

Делим их на три вида:

  • на основе моно-элементов
  • на основе поли-элементов
  • аморфные они же – плёночные. К ним также относят панели на основе теллурида кадмия, на основе селенида меди-индия и полимерные.

Здесь есть свои плюсы и минусы. Плюс в том, что на выходе мы получаем электричество, применение которого очень широко. Поликристаллические панели, имеют средний коэффициент полезного действия 12-18%, дешевле в изготовлении. Монопанели напротив, дороже и имеют выше КПД – 18-22%. Аморфные панели имеют самый низкий кпд 5-6 % но демонстрируют ряд преимуществ. Оптическое поглощения в 15- 20 раз выше, чем у поли и монокристаллов. Толщина меньше 1 мкм. Имеет хорошую производительность при пасмурной погоде, высокую гибкость. Применяют полимерные батареи там, где наибольшее значение имеет эластичность и экологичность. Дополнительно к панелям потребуются системы заряда, трансформации напряжений, распределители питания. Это и инверторы, аккумуляторы, контроллеры. Кремниевые элементы, чувствительны к загрязнениям, а при высоких температурах может потребоваться система охлаждения, хотя современные конструкции предусматривают это.

Совсем недавно австралийские учёные умудрились установить рекорд в 35% эффективности, принципиально новой разработкой в этой области. Хотя французы заявляют о разработке модулей с КПД в 46%, компаниями Soitec, CEA-Leti и Институтом Фраунгофера. Но простым смертным такого долго не видать. Кроме этого есть у кремниевых батарей ещё недостатки. В Америке применение таких панелей началось в шестидесятых годах, но наши умельцы похоже ещё долго будут мастерить подобия из дешёвых аналогов с востока. Всё-таки слишком ценный способ экономить для простого человека. Хотя, очень привлекательно получить определённую автономность в электропитании.

Также есть новации в отрасли автомобилестроения, авиации, кораблестроения. Выставочные, единичные или экспериментальные экземпляры существуют, но пока что, это остаётся роскошью. Порой, из прошлого возникает хорошо забытое старое, например освещение, с помощью световых колодцев. Способ знакомый еще со времен седых пирамид.

Некоторые хотят воплотить в жизнь идею солнечных дорог. Появились прозрачные элементы и самолёт, способный облететь землю на световом парусе. Германия поставила рекорд по количеству получаемой энергии в день, а в Индии целый аэродром перешёл на питание природным ресурсом. Наверняка близок тот день, когда технологии позволят нам брать от солнца ровно столько, сколько нам нужно.

Использование энергии Солнца на Земле краткий доклад, расскажет Вам о возможностях ее применения с пользой для человека.

Использование Солнечной энергии на Земле

Солнце представляет собой светящийся огромный газовый шар, в котором протекают достаточно сложные процессы и постоянно выделяется энергия. Благодаря ей существует жизнь на нашей планете: нагревается атмосфера и поверхность планеты, дуют ветра, нагреваются океаны и моря, произрастают растения и так далее.

Солнечная энергия способствует образованию ископаемым видам топлива, преобразовывается в теплоту и холод, электричество и движущую силу. Светило испаряет воду, влагу превращает в водные капли, образует туманы и облака. Одним словом, энергия Солнца создает гигантский круговорот влаги на планете, систему воздушного и водяного отопления планеты.

Когда солнечный свет попадает на растения, то вызывает у них процесс фотосинтеза, рост и развитие. Прогревая почву, он формирует ее климат, давая жизненную силу микроорганизмам, семенам растений и все существам, которые населяют почву. Без солнечной энергии живые организмы были бы в состоянии спячки (анабиоза).

Примеры использования солнечной энергии в народном хозяйстве

Солнечная энергия — это восстанавливаемый естественным путем источник энергии и, что важно, экологически безопасный. Ученые со всего мира работают над расширением возможности ее использования. Во многих странах созданы государственные программы для разработки технологий применения солнечной энергии.

Наибольшее потребление солнечной энергии наблюдается в Турции и Израиле. А рекордное число оборудованных домов системой солнечного нагрева воды находится на Кипре.

В сельскохозяйственной деятельности, а именно в агропромышленном комплексе, также применяется солнечная энергия. Планируется внедрить ее во все отрасли народного хозяйства. Свободные площади стен и крыш домов, хозяйственных построек позволяют накапливать достаточные количества электроэнергии, причем бесплатной. Фотоэлектрические системы можно применять для работы электропастуха на выпасах, насосов, электроножей, медогонок на пасеке, для обеспечения жилых зданий электричеством.

Воздушные коллекторы, работающие на солнечной энергии, создают среду для проживания людей и сельскохозяйственных животных, а также поддерживают показатели влажности и температуры на одном, заданном уровне.

Теплицы и парники, оборудованные гелиопанелями, накапливают и сохраняют тепло, обеспечивая микроклимат для растений.

Устройства на основе солнечной энергии применяются для проветривания и отопления овоще- и зернохранилищ, поддерживая заданные параметры человеком.

Надеемся, что «Использование энергии Солнца» реферат помог Вам подготовиться к занятию. А свое сообщение о солнечной энергии Вы можете оставить через форму комментариев ниже.

Что еще почитать