Методы определения белка в моче. Определение белка (количественное определение)

Для клиники имеет значение как качественное, так и количественное определение белка в моче.

Качественные пробы определения белка в моче
Предложено более 100 реакций качественного определения белка в моче. Большинство из них основаны на осаждении белка физическими (нагреванием) или химическими средствами. Наличие белка доказывается появлением мути.

Представляют интерес также и колориметрические сухие пробы.

Ниже будут описаны только наиболее важные для практики пробы.

Проба с сульфосалициловой кислотой . К нескольким миллилитрам мочи прибавляют 2-4 капли 20% раствора сульфосалициловой кислоты. При положительной реакции появляется муть. Результат обозначают терминами: опалесценция, слабо положительная, положительная или сильно положительная реакция. Проба с сульфосалициловой кислотой одна из самых чувствительных проб для установления белка в моче. Ею обнаруживаются даже самые незначительные патологические увеличения белка в моче. Благодаря простой технике эта проба нашла широкое применение.

Проба с асептолом . Асептол является заместителем сульфосалициловой кислоты. Его можно приготовить из имеющихся в любой лаборатории материалов (фенола и серной кислоты). В качестве реактива употребляют 20% раствор асептола. Проба проводится следующим образом: в пробирку, содержащую 2-3 мл мочи, подслаивают на дно 0,5-1 мл раствора асептола. Если на границе между двумя жидкостями получится белое кольцо из свернувшегося белка, проба положительна.

Проба Геллера . Под несколько миллилитров мочи подслаивают 1-2 мл 30% азотной кислоты (уд. вес 1,20). Если на границе обеих жидкостей получится белое кольцо, проба положительна. Реакция становится положительной, если белка больше 3,3 мг%. Иногда белое кольцо получается при наличии больших количеств уратов. В отличие от белкового кольца, уратное кольцо появляется не на границе между обеими жидкостями, а немного выше. Ларионова предлагает вместо 30% азотной кислоты употреблять в качестве реактива 1% раствор азотной кислоты в насыщенном растворе поваренной соли; это дает большую экономию азотной кислоты.

Проба с железистосинеродистым калием и уксусной кислотой . Эта реакция дает возможность отграничить белки сыворотки от нуклеоальбуминов.

В две пробирки наливают равные количества мочи. В одну из них добавляют несколько капель 30% раствора уксусной кислоты. Если получится муть по сравнению с контрольной пробиркой, моча содержит нуклеоальбумин. Если муть не появится, содержимое обеих пробирок смешивают и вновь разделяют на две части. В одну из двух пробирок добавляют несколько капель (избыток может превратить положительную пробу в отрицательную) 10% раствора желтой кровяной соли (железистосинеродистого калия). При наличии протеинов сыворотки получается муть.

При концентрированной моче, содержащей большие количества мочевой кислоты и уратов, пробу с железистосинеродистым калием и уксусной кислотой следует производить после предварительного разведения (в 2-3 раза) мочи водой. В противном случае может наступить помутнение, вызванное осевшей мочевой кислотой.

Это имеет особенно важное значение при исследование мочи грудных детей, содержащей много мочевой кислоты и уратов.

Из остальных качественных проб на белок в моче, основанных на осаждении белков, применение нашли: проба кипячением, пробы Эсбаха, Пэрди, Робертса, Альмена, Баллони, Буро, Клаудиуса, Корсо, Домэ, Гудманна-Сюзанна, Жолле, Экстона, Камлета, Кобуладзе, Лилиендаля-Петерсена, Полаччи, Понса, Шпиглера, Танре, Тиле, Броуна, Цушия и др.

При производстве качественных проб на белок в моче, основанных на осаждении белков, необходимо соблюдать следующие общие правила, нарушение которых приводит к значительным ошибкам при исследовании.

1. Исследуемая моча должна иметь кислую реакцию. При щелочной реакции, мочу слегка подкисляют уксусной кислотой. Производство пробы с щелочной мочой в тех случаях, когда используется в качестве реактива кислота, может привести к нейтрализации кислоты и к отрицательному результату при положительной реакции. Это особенно относится к пробе с сульфосалициловой кислотой, т. к. кислота прибавляется в очень малых количествах и легко может быть нейтрализована.

2. Исследуемая моча должна быть прозрачной.

3. Пробы для установления белка в моче следует всегда производить в двух пробирках, одна из которых служит контролем. Без контрольной пробирки можно не заметить легких помутнении при реакциях.

4. Количество прибавляемой кислоты при пробах не должно быть слишком большим. Большое количество кислоты может привести к образованию растворимых ацидальбуминов и к превращению положительной пробы в отрицательную.

Заслуживают большого внимания, благодаря своей простой технике, колориметрические сухие пробы. При этих пробах используется влияние, которое белок оказывает на цвет индикатора в буферном растворе (т. наз. протеиновая ошибка индикаторов). Лента фильтровальной бумаги, пропитанная кислым цитратным буфером и бромфеноловым синим в качестве индикатора, погружается на короткое время в мочу. Проба положительна, если получится сине-зеленая окраска. Сравнивая интенсивность окраски с цветными бумажными стандартами, можно вывести ориентировочно и количественные заключения. Индикаторная бумага продается в пачках с соответственными цветными стандартами, подобно универсальной индикаторной бумаге.

Методы, количественного определения белка в моче
Для количественного определения белка в моче предложено много методов. Точные количественные методы определения белков в биологическом материале не нашли широкого применения при определении белка в моче, вследствие сложной и трудоемкой техники. Широкое распространение получили волюметрические методы, особенно метод Эсбаха. Они очень просты, но, к сожалению, не отличаются большой точностью. Удобны для клиники также и методы группы Брандберга-Стольникова, дающие более точные результаты, чем волюметрические методы, при сравнительно простой технике. При наличии фотометра или нефелометра удобны также нефелометрические методы.

Метод Эсбаха . Он предложен парижским врачом Эсбахом в 1874 г. В специальную пробирку (альбуминометр Эсбаха) наливают мочу и реактив. Пробирку закупоривают резиновой пробкой, тщательно размешивают (не взбивая!) и оставляют в вертикальном положении до следующего дня. Отчитывают деление, до которого доходит столбик белкового осадка. Найденное число показывает содержание белка. Очень важно при методе Эсбаха, чтобы моча была кислой. Щелочная моча может нейтрализовать кислые составные части реактива и воспрепятствовать осаждению белков.

Преимущества метода: он прост и удобен на практике.

Недостатки: метод неточен, результат получается через 24 - 48 часов.

Метод Брандберга-Стольникова . Он основан на качественной пробе Геллера. Проба Геллера может быть использована для количественного определения, т. к. она дает положительный результат при содержании белка выше 3,3 мг%. Это предельная концентрация белка, ниже которой проба становится отрицательной.

Модификация Эрлиха и Альтгаузена . Советские ученые С. Л. Эрлих и А. Я. Альтгаузен модифицировали метод Брандберга-Стольникова, указав возможности упрощения исследования и экономии времени при его производстве.

Первое упрощение связано с временем появления кольца. Определяется точно время его появления, не придерживаясь непременно 2-ой и 3-ей минуты.

Второе упрощение дает возможность установить, какое следует сделать разведение. Авторы доказали, что по виду полученного кольца можно приблизительно установить необходимое разведение. Они различают нитевидное, широкое
и компактное кольцо.

Из нефелометрических методов заслуживает быть отмеченным метод Кингсбэрри и Кларка . В небольшой градуированный цилиндр наливают 2,5 мл фильтрованной мочи, пополняют 3% водным раствором сульфосалициловой кислоты до 10 мл. Тщательно размешивают и через 5 минут фотометрируют в 1 см кюветке, при желтом фильтре, употребляя воду в качестве компенсационной жидкости. При фотометре Пульфриха найденная экстинкция, умноженная на 2,5, дает количество белка в %о. В том случае, когда экстинкционный показатель выше 1,0, моча предварительно разводится в 2 раза, в 4 раза или еще больше.

Для того, чтобы иметь ясное представление о количестве выделенных в моче белков, необходимо определить не только их концентрацию в отдельной порции мочи, но и их общее суточное количество. Для этого собирают мочу больного в продолжение 24 часов, измеряют ее объем в миллилитрах и определяют концентрацию белка в порции суточной мочи в г%. Количество выделенных в моче за 24 часа белков определяется в зависимости от суточного количества мочи в граммах.

Клиническое значение белка в моче

Моча человека нормально содержит минимальные количества белка, которые не могут быть установлены обыкновенными качественными пробами исследования белка в моче. Выделение больших количеств белка, при которых обыкновенные качественные пробы на белок в моче становятся положительными - явление ненормальное, называемое протеинурией. Протеинурия бывает физиологической только у новорожденного, в первые 4-10 дней после рождения. Употребляемое обыкновенно название альбуминурия неправильно, т. к. в моче выделяются не только альбумины, но и другие виды белков (глобулины и пр.).

Протеинурию, как диагностический симптом, открыл в 1770 году Котуньо.

Наиболее важные функциональные почечные протеинурии у детей следующие:

1. Физиологическая протеинурия новорожденного . Встречается у большинства новорожденных и не имеет неблагоприятного значения. Объясняется неокрепшим почечным фильтром, повреждением при рождении или потерей жидкостей в первые дни жизни. Физиологическая протеинурия исчезает на 4-10-ый день после рождения (у недоношенных детей позже). Количество белка невелико. Он представляет собой нуклеоальбумин.

Неонатальная альбуминурия, продолжающаяся долгое время, может быть симптомом конгенитального люэса.

2. Инсультные альбуминурии . Они вызываются превышением порога нормальной раздражимости почечного фильтра значительными механическими, термическими, химическими, психическими и другими раздражениями - потерей жидкости у грудных детей (дегидрационная протеинурия), холодным купанием, обильной, богатой белками пищей (алиментарная протеинурия), пальпацией почки (пальпаторная альбуминурия), физическим переутомленном, страхом и т. д.

Инсультные альбуминурии легче появляются у детей в раннем возрасте, чем у детей в старшем возрасте и у взрослых, так как почки грудного и маленького ребенка легче поддаются раздражениям. Дегидрационная альбуминурия (нарушение кормления, гидрелабилитет, токсикозы, поносы , рвоты) особенно часто наблюдается у грудных детей.

Инсультные альбуминурии доброкачественны. Они исчезают сейчас же после устранения вызывающих их причин. В осадке иногда находятся единичные лейкоциты, цилиндры и эритроциты. Белок чаще всего представляет собой нуклеоальбумин.

3. Ортостатическая протеинурия . Это состояние характерно для детей дошкольного и школьного возрастов. Оно возникает на почве вазомоторных нарушений кровоснабжения почки. Типическим для ортостатической альбуминурии (отсюда и ее название) является то, что она появляется только при стоячем положении ребенка, когда позвоночник занимает лордотическое положение. В лежачем положении она исчезает. Выделяется нуклеоальбумин. В сомнительных случаях можно прибегнуть к ортостатическому опыту, который заключается в следующем: вечером, за час до того как лечь, ребенок опоражнивает мочевой пузырь; утром, вставая с постели, он снова выпускает мочу. Эта моча не содержит белка. Затем ребенка ставят на колени в продолжение 15-30 минут с палкой за спиной, между согнутыми локтями обеих рук. Создается положение лордоза, которое приводит к выделению белка, без изменений в осадке.

При ортостатической альбуминурии в сутки может выделяться 8-10 г белка.

Важнейшее клиническое значение между всеми протеинуриями имеют органические почечные протеинурии. Они вызываются органическими заболеваниями почек (нефритами, нефрозами, нефросклерозами). Протеинурия является одним из самых важных и самых известных симптомов органических заболеваний почек.

1. При остром и хроническом гломерулонефрите протеинурия встречается регулярно. Количество белка умеренное, причем не наблюдается параллельности между степенью протеинурии и тяжестью заболевания. Напротив, хронические и более тяжелые нефриты часто протекают с меньшими количествами белка, чем острые. После острого нефрита , иногда в продолжение долгого времени (годами), устанавливаются небольшие количества белка в моче, не имеющие патологического значения ("остаточная альбуминурия"). Не следует забывать, что могут встречаться и "нефриты без протеинурии". Иногда белок обнаруживается в одной порции мочи, а в другой его нет. Отношение альбуминов к глобулинам при острых нефритах невысоко, а при хронических нефритах выше.

2. При нефросклерозе количество белков в моче совсем незначительно, часто встречаются формы болезни без белка в моче.

3. Из всех почечных заболеваний нефрозы протекают с наиболее выраженной протеинурией.

4. При инфекционных и токсических состояниях встречаются так называемые лихорадочные и токсические протеинурии. Это острые нефрозы, при которых количество белка невелико. К этой группе относятся и протеинурии при конвульсивных состояниях (судорогах), при гиперфункции щитовидной железы, желтухах, инвагинациях, энтероколитах, ожогах , тяжелых анемиях и т. д. Эти альбуминурии доброкачественны и быстро проходят (транзиторные альбуминурии).

5. При застое крови в почках встречается так называемая застойная альбуминурия, характерная для сердечно больных в стадии декомпенсации. Она встречается также при асцитах и опухолях живота.

При лихорадочных, токсических и застойных альбуминуриях особенно сильно выражена повышенная проницаемость почечного фильтра. По мнению некоторых авторов, многие на этих протеинурии протекают без органического повреждения паренхимы почек.

Внепочечные альбуминурии вызываются обыкновенно белковыми примесями (секрециями, распавшимися клетками), которые выделяются заболевшими мочевыми путями и половыми органами. Чаще встречаются внепочечные альбуминурии вследствие цистопиелитов (пиурии), реже вследствие вульвовагинитов, конкрементов и опухолей мочевых путей.

При внепочечной альбуминурии в осадке находят большое количество лейкоцитов и бактерий. Почечные элементы почти не встречаются. Количество белка невелико. Фильтрованная или центрифугированная моча обыкновенно не дает положительной пробы на белок.

У выздоравливающих от пиелита альбуминурия исчезает после бактериурии и пиурии.

Следует подчеркнуть как характерное явление, что в раннем детском возрасте органические почечные заболевания появляются чрезвычайно редко, поэтому и органические протеинурии также редки. Из них встречаются, главным образом, лихорадочные и токсические. В отличие от органических протеинурии, у детей в раннем возрасте очень сильно распространены инсультные альбуминурии.

У детей старшего возраста органические протеинурии чаще функциональных. Вообще с возрастом функциональные протеинурии встречаются реже, а органические чаще.

Электрофоретические исследования белков в моче

Ряд авторов пользуются электрофоретическим методом для исследования белков в моче (уропротеинов). Из полученных электрофореграмм видно, что они имеют тот же качественный состав, как и белки плазмы. Это указывает на то, что белки в моче происходят из плазменных белков.

Множество заболеваний протекают без выраженных клинических проявлений, поэтому определение белка в моче с целью своевременного выявления и лечения патологического состояния является важным моментом для практической медицины.

Белок в моче может определяться качественными и количественными методами.

Качественные методы

На данный момент существует около 100 известных качественных реакций на белок. Они заключаются в осаждении протеина методом физических или химических воздействий. При положительной реакции происходит помутнение.

Наиболее информативными являются пробы:

  1. С сульфосалициловой кислотой. Считается наиболее чувствительной и с ее помощью возможно определение даже самых незначительных количеств белковых тел в моче. Описание результата при следовом присутствии протеина обозначается термином «опалесценция», а при большем количестве — «слабо положительная», «положительная» и при большой потере белка с мочой — «сильно положительная реакция».
  2. С заместителем кислоты — асептолом. В урину добавляется раствор вещества, и при образовании кольца на границе растворов, говорится о том, что проба является положительной.
  3. Геллера. Производится при помощи раствора азотной кислоты. Итог проведения трактуется аналогично той, что с асептолом. Иногда кольцо может быть во время присутствия в исследуемой жидкости уратов.
  4. С уксусной кислотой с добавлением селезистосинеродистого калия. При высокой концентрации мочи при проведении такой пробы, ее разбавляют, иначе может получиться ложноположительный результат, так как реакция будет на ураты и мочевую кислоту.

Неправильное проведение такой пробы часто может давать неверный результат у новорожденных детей, так как у них моча образуется с высоким содержанием мочевой кислоты.

Основные правила при проведении проб заключаются в следующем — необходимо, чтобы исследуемая моча была прозрачная, имела слабокислую среду (для этого иногда добавляют в нее небольшое количество уксусной кислоты), пробирок должно быть две для осуществления контроля.

Количественное определение

Когда проводится анализ мочи, общий белок определяется и количественными методами. Их достаточно много, но чаще всего применяются следующие:

  1. Метод Эсбаха. Используется еще с 19 века. Для этого в определенную пробирку наливается моча и реактив. Потом смесь немного взбалтывают, и в закрытом виде оставляют на 24−48 часов. Полученный осадок считается по делению на пробирке. Правильный вывод можно сделать только при кислой моче. Такая методика достаточно проста, но не имеет высокой точности и требует затрат времени.
  2. Метод Брандберга-Стольникова. Основан на пробе Геллера, которая позволяет получить результат при концентрации протеина более 3,3 мг%. Позднее такой способ был модифицирован и упрощен.
  3. Широко используются нефелометрические методы установления количества белка.

Для полного понимания количества протеина, лучше всего использовать анализ мочи на суточный белок.

Для правильного результата первая утренняя порция выливается, сбор начинается со второй порции в одну емкость, которую рекомендуется держать в холодильнике.

Последняя порция собирается утром. После этого необходимо измерить объем, затем тщательно перемешать, и отлить в баночку порцию не более 50мл. Эту емкость и следует сдать в лабораторию. На специальном бланке требуется указать результаты общего объема суточной мочи, а также рост и вес пациента.

Применение тест-полосок

Тест на белок в моче действует по принципу индикаторов. Специальные полоски могут изменять свою окраску в зависимости от концентрации протеина. Они удобны для определения изменений, которые происходят в разное время, и применяются как в условиях дома, так и любых лечебных и профилактических учреждениях.

Тестовые мочевые полоски используются при необходимости раннего определения и отслеживания результатов лечения при мочеполовых патологиях. Такая методика диагностики является чувствительной, и реагирует на альбумин в его концентрации от 0,1 г/л., и позволяет определить качественное и полуколичественное изменение содержания в моче белка.

По результатам этой диагностики можно контролировать эффективность терапии, вносит в нее поправки, и назначить необходимую диету.

Небольшое количество белка в суточной моче обнаруживается и у вполне здоровых лиц, однако такие небольшие концентрации не выявляют в разовых порциях используемыми в настоящее время методами. Приблизительно 70% белков мочи здорового человека приходится на долю уромукоида - белка, являющегося продуктом почечной ткани; таким образом, доля гломерулярного белка в моче здоровых людей является ничтожно малой и протеинурия в норме составляет 50-150 мг/сут, причем большинство белков мочи идентично сывороточным.

Принято различать следующие формы протеинурии в зависимости от места возникновения: преренальную, связанную с усиленным распадом белка тканей, выраженным гемолизом; ренальную, обусловленную патологией почек, которая может быть разделена на клубочковую и канальцевую; постренальную, связанную с патологией мочевыводящих путей и чаще всего обусловленную воспалительной экссудацией.

В зависимости от длительности существования выделяют постоянную протеинурию, существующую в течение многих недель и даже лет, и преходящую, появляющуюся периодически, иногда даже при отсутствии патологии почек, например при лихорадке и выраженной интоксикации. Целесообразно различать вариабельность протеинурии: при суточной потере белка до 1 г - умеренную, от 1 до 3 г - среднюю и более 3 г - выраженную.

Обнаружение в моче белков с относительно большой молекулярной массой свидетельствует об отсутствии избирательности почечного фильтра и выраженном его поражении. В этих случаях говорят о низкой селективности протеинурии. Поэтому в настоящее время широкое распространение получило определение белковых фракций мочи. Наиболее точны методы электрофореза в крахмальном и полиакриламидном геле.
По результатам, полученным этими методами, можно судить о селективности протеинурии.

Большинство качественных и количественных методов определения белка в моче основаны на его коагуляции в объеме мочи или на границе сред (мочи и кислоты); если есть способ измерить интенсивность коагуляции, то проба становится количественной.

Унифицированная проба с сульфосалициловой кислотой:

Необходимый реактив:

20%-ный раствор сульфосалициловой кислоты.

Ход исследования:

В 2 пробирки наливают по 3 мл профильтрованной мочи. В опытную пробирку прибавляют 6-8 капель реактива. На темном фоне сравнивают контрольную пробирку с опытной. Помутнение в опытной пробирке указывает на наличие белка, пробу считают положительной.

Если реакция мочи щелочная, то перед исследованием ее подкисляют 2-3 каплями 10%-ного раствора уксусной кислоты.

Унифицированный метод Брандберга-Робертса-Стольникова:

В основу метода положена кольцевая проба Геллера, заключающаяся в том, что на границе азотной кислоты и мочи при наличии белка происходит его коагуляция и появляется белое кольцо.

Необходимый реактив:

30%-ный раствор азотной кислоты (относительная плотность 1,2) или реактив Ларионовой.
Приготовление реактива Ларионовой: 20-30 г хлорида натрия растворяют при нагревании в 100 мл дистиллированной воды, дают остыть, фильтруют. К 99 мл фильтрата приливают 1 мл концентрированной азотной кислоты.

Ход исследования:

В пробирку наливают 1-2 мл азотной кислоты (или реактива Ларионовой) и осторожно, по стенке пробирки, наслаивают такое же количество профильтрованной мочи. Появление тонкого белого кольца на границе двух жидкостей между 2 и 3-й минутой указывает на наличие белка в концентрации примерно 0,033 г/л. Если кольцо появляется раньше 2 мин после наслаивания, мочу следует развести водой и провести повторное наслаивание уже разведенной мочи. Степень разведения мочи подбирают в зависимости от вида кольца, т.е. его ширины, компактности и времени появления. При нитевидном кольце, появившемся ранее 2 мин, мочу разводят в 2 раза, при широком - в 4 раза, при компактном - в 8 раз и т.д. Концентрацию белка при этом вычисляют путем умножения 0,033 на степень разведения и выражают в граммах на 1 л (г/л).

Иногда белое кольцо получается при наличии больших количеств уратов. В отличие от белкового кольца уратное появляется немного выше границы между двумя жидкостями и растворяется при легком нагревании.

Количественное определение белка в моче по помутнению, образующемуся при добавлении сульфосалициловой кислоты:

Принцип метода:

Интенсивность помутнения при коагуляции белка сульфосалициловой кислотой пропорциональна его концентрации.

Необходимые реактивы:

1. 3%-ный раствор сульфосалициловой кислоты.

2. 0,9%-ный раствор хлорида натрия.

3. Стандартный раствор альбумина - 1%-ный раствор (1 мл раствора, содержащий 10 мг альбумина): 1 г лиофилизированного альбумина (из человеческой или бычьей сыворотки) растворяют в небольшом количестве 0,9%-ного раствора хлорида натрия в колбе вместимостью 100 мл, а затем доводят до метки тем же раствором. Реактив стабилизируют прибавлением 1 мл 5%-ного раствора азида натрия (NaN3). При хранении в холодильнике реактив годен в течение 2 месяцев.

Специальное оборудование - фотоэлектроколориметр.

Ход исследования:

В пробирку вносят 1,25 мл профильтрованной мочи, доливают до 5 мл 3%-ным раствором сульфосалициловой кислоты, перемешивают. Через 5 мин измеряют на фотоэлектроколориметре при длине волны 590-650 нм (оранжевый или красный светофильтр) против контроля в кювете длиной оптического пути 5 мм. Контролем служит пробирка, в которой к 1,25 мл профильтрованной мочи долили до 5 мл 0,9%-ный раствор хлорида натрия. Расчет ведут по калибровочному графику, для построения которого из стандартного раствора готовят разведения, как указано в таблице.

Из каждого полученного раствора берут 1,25 мл и обрабатывают, как опытные пробы.

Прямолинейная зависимость при построении калибровочного графика сохраняется до 1 г/л. При более высоких концентрациях пробу следует разводить и учитывать разведение при расчете.

Ложноположительные результаты могут быть получены при наличии в моче контрастных веществ, содержащих органический йод. Поэтому тест нельзя использовать у лиц, принимающих препараты йода; ложноположительный результат может быть также обусловлен приемом сульфаниламидных препаратов, больших доз пенициллина и при высоких концентрациях в моче мочевой кислоты.

Биуретовый метод:

Принцип метода:

Пептидные связи белка с солями меди в щелочной с образуют комплекс фиолетового цвета. Белки предварительно осаждают трихлоруксусной кислотой.

Необходимые реактивы:

1. 10%-ный раствор трихлоруксусной кислоты.
2. 20%-ный раствор меди (CuSO4∙5H2O).
3. 3%-ный раствор NaOH.

Ход исследования:

К 5 мл мочи, взятой из суточного количества, прибавляют 3 мл раствора трихлоруксусной кислоты, центрифугируют до постоянного объема осадка. Надосадочную жидкость отсасывают пипеткой, осадок затем растворяют в 5 мл раствора NaОН. К раствору добавляют 0,25 мл CuSO4, смесь перемешивают и центрифугируют. Надосадочную жидкость фотометрируют при длине волны 540 нм в кювете с длиной оптического пути 10 мм против дистиллированной воды. Концентрацию белка рассчитывают по калибровочной кривой, при построении которой на оси ординат откладывают концентрацию белка (г/л), а на оси абсцисс - оптическую плотность в единицах экстинкции. По полученной концентрации рассчитывают суточную потерю белка с мочой.

С помощью индикаторной бумаги (полосок):

Белок может быть обнаружен с помощью индикаторной бумаги (полосок), которые выпускаются фирмами “Albuphan”, “Ames” (Англия), “Albustix”, “Boehringer” (Германия), “Comburtest” и др.

Принцип основан на феномене так называемой протеиновой ошибки некоторых кислотно-щелочных индикаторов. Индикаторная часть бумаги пропитана тетрабромфеноловым синим и цитратным буфером. При увлажнении бумаги буфер растворяется и обеспечивает соответствующий рН для реакции индикатора.

При 3,0-3,5 аминогруппы белков реагируют с индикатором и меняют его первоначально желтую окраску на зеленовато-синюю, после чего, сравнивая с цветной шкалой, можно ориентировочно оценить концентрацию белка в исследуемой моче. Основной предпосылкой правильной работы индикаторных полосок является обеспечение pH в диапазоне 3,0-3,5 для протекания реакции.

Если бумага находится в контакте с исследуемой мочой дольше экспозиции, указанной в инструкции, то цитратный буфер в ней растворяется, и тогда индикатор реагирует на истинный рН мочи, т.е. дает ложноположительную реакцию. В связи с тем, что емкость буфера ограничена, то даже при соблюдении методических указаний в пробах слишком щелочной мочи (pH > 6,5) получаются ложноположительные результаты, а в пробах слишком кислой мочи (рН
Число реагирующих аминогрупп в составе отдельных белков различно, поэтому альбумины реагируют в 2 раза интенсивнее, чем такое же количество γ-глобулинов (белок Бенс-Джонса, парапротеины), и гораздо интенсивнее, чем гликопротеиды. Однако при большом количестве слизи с высоким содержанием гликопротеидов (при воспалении мочевыводящих путей) оседающие на индикаторной полоске хлопья слизи могут давать ложноположительные результаты.

Чувствительность отдельных производственных серий индикаторной бумаги, равно как и отдельных видов бумаги, выпускаемых одной и той же фирмой, может быть различной, поэтому к количественной оценке белка этим методом следует относиться осторожно. Определение суточной потери белков с мочой при помощи индикаторной бумаги невозможно. Таким образом, индикаторная бумага уступает химическим пробам, в первую очередь пробе с сульфосалициловой кислотой, хотя и дает возможность быстрого исследования серии образцов.

Обнаружение в моче белка Бенс-Джонса:

Белок Бенс-Джонса может выделяться с мочой при миеломной болезни, макроглобулинемии Вальденстрема.

Исследование целесообразно проводить только при положительной пробе с сульфосалициловой кислотой. Индикаторная бумага для обнаружения белка Бенс-Джонса непригодна.

Принцип:

Основан на реакции термопреципитации. Методы, с помощью которых оценивают растворение белка Бенс-Джонса при температуре 100 °С или повторное осаждение при последующем охлаждении, ненадежны, так как далеко не все белковые тела Бенс-Джонса обладают соответствующими свойствами. Наиболее достоверно выявление этого парапротеина осаждением его при температуре 40-60 °С, но и в этих условиях осаждение может не произойти в слишком кислой (рН 6,5) моче, при низкой относительной плотности мочи и при низкой концентрации белка Бенс-Джонса.

Необходимый реактивы:

2 М ацетатный буфер рН 4,9.

Ход исследования:

Профильтрованную мочу в количестве 4 мл смешивают с 1 мл буфера и согревают в течение 15 мин на водяной бане при температуре 56 °С. При наличии белков Бенс-Джонса уже в течение 2 мин появляется выраженный осадок, при концентрации белка Бенс-Джонса менее 3 г/л проба может получиться отрицательной. На практике это встречается крайне редко, так как большей частью концентрация белка Бенс-Джонса в моче значительная.

С полной достоверностью белок Бенс-Джонса может быть обнаружен иммуноэлектрофоретическим исследованием при использовании специфических сывороток против тяжелых и легких цепей иммуноглобулинов.

Определение альбумоз (протеоз):

Альбумозы - это продукты расщепления белков, принцип определения которых основан на том, что они не сворачиваются при кипячении, но дают положительную биуретовую реакцию и высаливаются некоторыми солями, особенно сульфатом аммония и ацетатом цинка в кислой среде.

Нормальная моча альбумоз не содержит. Следы могут быть в нормальной моче в случае примеси семенной жидкости. В патологии альбумозы могут встречаться в моче при лихорадочных состояниях, переливании крови и плазмы, рассасывании экссудатов и транссудатов, распаде опухолей.

Необходимые реактивы:

1. Насыщенный раствор хлорида натрия.
2. Концентрированный раствор едкого натра.
3. Слабый раствор сульфата меди (почти бесцветный).

Ход исследования:

К моче, подкисленной уксусной кислотой, прибавляют насыщенный раствор хлорида натрия (1/3 объема), кипятят и горячую жидкость фильтруют. Альбумозы проходят в фильтрат, в котором их присутствие определяют биуретовой реакцией. К фильтрату прибавляют 1/2 объема концентрированного раствора едкого натра и несколько капель слабого раствора сульфата меди. При положительной пробе получается красно-фиолетовое окрашивание.

При положительной пробе с сульфосалициловой кислотой мочу нагревают. Если муть исчезает и вновь появляется при охлаждении, это означает, что моча содержит альбумозы или белковое тело Бенс-Джонса.

Небольшие количества белка обнаруживаются в суточной моче у здоровых лиц. Однако такие небольшие концентрации его не удается выявить с помощью обычных методов исследования. Выделение более значительных количеств белка, при которых обычные качественные пробы на белок в моче становятся положительными, называются протеинурией. Различают почечную (истинную) и внепочечную (ложную) протеинурию. При почечной протеинурии белок в мочу проникает непосредственно из крови вследствие увеличения фильтрации его клубочками почки или снижения канальцевой реабсорбции.

Почечная (истинная) протеинурия

Почечная (истинная) протеинурия бывает функциональной и органической. Среди функциональной почечной протеинурии наиболее часто наблюдаются следующие ее виды:

Физиологическая протеинурия новорожденных, которая исчезает на 4— 10-й день после рождения, а у недоношенных несколько позже;
- ортостатическая альбуминурия, которая характерна для детей в возрасте 7—18 лет и появляется только в вертикальном положении тела;
- транзиторная (инсультная) альбуминурия, причиной которой могут быть различные заболевания органов пищеварения, тяжелая анемия, ожоги, травмы или физиологические факторы: тяжелая физическая нагрузка, переохлаждение, сильные эмоции, обильная, богатая белком пища и др.

Органическая (почечная) протеинурия наблюдается вследствие прохождения белка из крови через поврежденные участки эндотелия почечных клубочков при заболеваниях почек (гломерулонефрит, нефроз, нефросклероз, амилоидоз, нефропатия беременных), расстройствах почечной гемодинамики (почечная венная гипертензия, гипоксия), трофических и токсических (в том числе лекарственных) воздействиях на стенки капилляров клубочков.

Внепочечная (ложная) протеинурия

Внепочечная (ложная) протеинурия, при которой источником белка в моче является примесь лейкоцитов, эритроцитов, бактерий, клеток уротелия. наблюдается при урологических заболеваниях (мочекаменная болезнь, туберкулез почек, опухоли почки и мочевых путей и др.).

Определение белка в моче

Большинство качественных и количественных методов определения белка в моче основаны на его коагуляции в объеме мочи или на границе сред (мочи и кислоты).

Среди качественных методов определения бедка в моче наибольшее распространение получили унифицированная проба с сульфосалициловой кислотой и кольцевая проба Геллера.

Унифицированная проба с сульфасалициловой кислотой проводится следующим образом. В 2 пробирки наливают по 3 мл профильтрованной мочи. В одну из них прибавляют 6—8 капель 20 % раствора сульфасалициловой кислоты. На темном фоне сравнивают обе пробирки. Помутнение мочи в пробирке с сульфасалициловой кислотой указывает на наличие белка. Перед исследованием необходимо определить реакцию мочи, и если она щелочная, то подкислить 2—3 каплями 10 % раствора уксусной кислоты.

Проба Геллера основана на том, что при наличии белка в моче на границе азотной кислоты и мочи происходит его коагуляция и появляется белое кольцо. В пробирку наливают 1—2 мл 30 % раствора азотной кислоты и осторожно по стенке пробирки наслаивают точно такое же количество профильтрованной мочи. Появление белого кольца на границе двух жидкостей указывает на наличие белка в моче. Следует помнить, что иногда белое кольцо образуется при наличии большого количества уратов, но в отличие от белкового кольца оно появляется несколько выше границы между двумя жидкостями и растворяется при нагревании [Плетнева Н.Г., 1987].

Из количественных методов наиболее часто применяются:

1) унифицированный метод Брандберга—Робертса—Стольникова, в основу которого положена кольцевая проба Геллера;
2) фотоэлектроколориметрический метод количественного определения белка в моче по помутнению, образующемуся при добавлении сульфасалициловой кислоты;
3) биуретовый метод.

Выявление белка в моче упрощенным ускоренным методом проводят колориметрическим методом с помощью индикаторной бумаги, которую выпускают фирмы «Lachema» (Словакия), «Albuphan», «Ames» (Англия), «Albustix», «Boehringer» (Германия), «Comburtest» и др. Метод заключается в погружении в мочу специальной бумажной полоски, пропитанной тетрабромфеноловым синим и цитратным буфером, которая меняет свой цвет от желтого до синего в зависимости от содержания белка в моче. Ориентировочно концентрацию белка в исследуемой моче определяют с помощью стандартной шкалы. Для получения правильных результатов необходимо соблюдать следующие условия. рН мочи должна быть в пределах 3,0—3,5; при слишком щелочной моче (рН 6,5) будет получен ложноположительный результат, а при слишком кислой моче (рН 3,0) — ложноотрицательный.

Бумага должна находиться в контакте с исследуемой мочой не дольше, чем указано в инструкции, в противном случае тест даст ложноположительную реакцию. Последнюю также наблюдают и при содержании в моче большого количества слизи. Чувствительность различных видов и серий бумаги может быть различной, поэтому к количественной оценке белка в моче этим методом следует относиться осторожно. Определение его количества в суточной моче при помощи индикаторной бумаги невозможно [Плетнева Н.Г., 1987]

Определение суточной протеинурии

Существует несколько способов определения количества белка, выделившегося с мочой за сутки. Наиболее простым является метод Брандберга —Робертса—Стольникова.

Методика. 5-10 мл тщательно перемешанной суточной мочи наливают в пробирку и осторожно по стенкам ее добавляют 30 % раствор азотной кислоты. При наличии белка в моче в количестве 0,033 % (т.е. 33 мг на 1 л мочи) через 2-3 мин появляется тонкое, но четко видимое белое кольцо. При меньшей его концентрации проба отрицательная. При большем содержании белка в моче его количество определяют путем многократных разведений мочи дистиллированной водой до тех пор, пока не перестанет образовываться кольцо. В последней пробирке, в которой еще видно кольцо, концентрация белка будет составлять 0,033 %. Умножив 0,033 на степень разведения мочи, определяют содержание белка в 1 л неразведенной мочи в граммах. Затем рассчитывают содержание белка в суточной моче по формуле:

К=(х·V)/1000

Где К — количество белка в суточной моче (г); х — количество белка в 1 л мочи (г); V — количество мочи, выделенное за сутки (мл).

В норме в течение суток с мочой выделяется от 27 до 150 мг (в среднем 40—80 мг) белка.

Указанная проба позволяет определить в моче только мелкодисперсные белки (альбумины). Более точные количественные методы (колориметрический метод Кьельдаля и др.) довольно сложны и требуют специальной аппаратуры.

При почечной протеинурии с мочой выделяются не только альбумины, но и другие виды белка. Нормальная протеинограмма (по Зейцу и соавт., 1953) имеет следующее процентное содержание: альбуминов — 20 %, α 1 -глобулинов — 12 %, α 2 -глобулинов — 17 %, γ-глобулинов — 43 % и β-глобулинов — 8 %. Отношение альбуминов к глобулинам изменяется при различных заболеваниях почек, т.е. нарушается количественное соотношение между белковыми фракциями.

Наиболее распространенными методами фракционирования уропротеинов являются следующие: высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические методы (реакция радиальной иммунодиффузии по Манчини, иммуноэлектрофоретический анализ, преципитационный иммуноэлектрофорез), хроматография, гель-фильтрация, а также ультрацентрифугирование.

В связи с внедрением методов фракционирования уропротеинов, основанных на изучении электрофоретической подвижности, вариабильности молекулярной массы, размеров и формы молекул уропротеинов, появилась возможность выделять характерные для того или иного заболевания типы протеинурии, изучать клиренсы индивидуальных плазменных белков. К настоящему времени в моче идентифицировано свыше 40 плазменных белков, В том числе в нормальной моче 31 плазменный белок .

Селективная протеинурия

В последние годы появилось понятие селективности протеинурии. В 1955 г. Hardwicke и Squire сформулировали понятие «селективная» и «неселективная» протеинурия, определив, что фильтрация плазменных белков в мочу подчиняется определенной закономерности: чем больше молекулярная масса белка, экскретируемого в мочу, тем меньше его клиренс и тем ниже концентрация его в окончательной моче. Протеинурия, соответствующая этой закономерности, является селективной в отличие от неселективной, для которой характерным является извращение выведенной закономерности.

Обнаружение в моче белков с относительно большой молекулярной массой свидетельствует об отсутствии избирательности почечного фильтра и выраженном его поражении. В этих случаях говорят о низкой селективности протеинурии. Поэтому в настоящее время широкое распространение получило определение белковых фракций мочи с использованием методов электрофореза в крахмальном и полиакриламидном геле. По результатам этих методов исследования можно судить о селективности протеинурии.

По данным В.С.Махлиной (1975), наиболее оправданным является определение селективности протеинурии путем сравнения клиренсов 6—7 индивидуальных белков плазмы крови (альбумина, транеферрина, α 2 - макроглобулина, IgA, IgG, IgM) с использованием точных и специфичных количественных иммунологических методов реакции радиальной иммунодиффузии по Манчини, иммуноэлектрофоретического анализа и преципитального иммуноэлектрофореза. Степень селективности протеинурии определяют по индексу селективности, представляющего собой отношение сравниваемого и эталонного белков (альбумина).

Изучение клиренсов индивидуальных плазменных белков позволяет получить достоверные сведения о состоянии фильтрационных базальных мембран клубочков почки. Связь между характером экскретируемых в мочу белков и изменениями базальных мембран клубочков настолько выражена и постоянна, что по уропротеинограмме можно косвенно судить о патофизиологических изменениях в клубочках почек. В норме средний размер пор гломерулярной базальной мембраны составляет 2,9—4 А° НМ, которые могут пропускать белки, имеющие молекулярную массу до 10 4 (миоглобулин, кислый α 1 - гликопротеин, легкие цепи иммуноглобулинов, Fc и Fab — фрагменты IgG, альбумин и трансферрин).

При гломерулонефрите, нефротическом синдроме размеры пор в базальных мембранах клубочков увеличиваются, в связи с чем базальная мембрана становится проницаемой для белковых молекул большого размера и массы (церулоплазмин, гаптоглобин, IgG, IgA и др.). При крайней степени повреждения клубочков почек в моче появляются гигантские молекулы белков плазмы крови (α 2 -макроглобулин, IgM и β 2 -липопротеин).

Определяя белковый спектр мочи, можно сделать заключение о преимущественном поражении тех или иных участков нефрона. Для гломерулонефрита с преимущественным поражением гломерулярных базальных мембран характерно наличие в моче крупно- и среднемолекулярных белков. Для пиелонефрита с преимущественным поражением базальных мембран канальцев характерны отсутствие крупномолекулярных и наличие повышенных количеств средне- и низкомолекулярных белков.

β 2 -Микроглобулин

Помимо общеизвестных белков, таких как альбумин, иммуноглобулины, липопротеины. фибриноген, трансферрин, в моче содержатся плазменные белки-микропротеины, среди которых клинический интерес представляет β 2 -микроглобулин, открытый Berggard и Bearn в 1968 г. Имея низкую молекулярную массу (относительная молекулярная масса 1800), он свободно проходит через клубочки почки и почти полностью реабсорбируется в проксимальных канальцах. Это позволяет использовать количественное определение β 2 -микроглобулина в крови и моче для определения клубочковой фильтрации и способности почек к резорбции протеинов в проксимальных канальцах.

Концентрацию этого белка в плазме крови и моче определяют радиоиммунологическим методом с помощью стандартного набора «Phade-bas β 2 -mikroiest» (фирма «Pharmaсia», Швеция). В сыворотке крови здоровых людей содержится в среднем 1,7 мг/л (колебания от 0,6 до 3 мг/л), в моче — в среднем 81 мкг/л (максимально 250 мкг/л) β 2 -микроглобулина. Превышение его в моче свыше 1000 мкг/л — явление патологическое. Содержание β 2 -микроглобулина в крови увеличивается при заболеваниях, сопровождающихся нарушением клубочковой фильтрации, в частности при остром и хроническом гломерулонефрите, поликистозе почек, нефросклерозе, диабетической нефропатии, острой почечной недостаточности.

Концентрация β 2 -микроглобулина в моче повышается при заболеваниях, сопровождающихся нарушением реабсорбционной функции канальцев, что приводит к увеличению экскреции его с мочой в 10—50 раз, в частности, при пиелонефрите, ХПН, гнойной интоксикации и др. Характерно, что при цистите в отличие от пиелонефрита не наблюдается увеличения концентрации β 2 -микроглобулина в моче, что может быть использовано для дифференциальной диагностики этих заболеваний. Однако при интерпретации результатов исследования надо учитывать, что любое повышение температуры всегда сопровождается увеличением экскреции β 2 -микроглобулина с мочой.

Средние молекулы крови и мочи

Средние молекулы (СМ), иначе называемые белковыми токсинами, представляют собой вещества с молекулярной массой 500—5000 дальтон. Физическая структура их неизвестна. В состав СМ входят по меньшей мере 30 пептидов: окситоцин, вазопрессин, ангиотензин, глюкагон, адренокортикотропный гормон (АКТГ) и др. Избыточное накопление СМ наблюдается при снижении функции почек и содержании в крови большого количества деформированных белков и их метаболитов. Они обладают разнообразным биологическим действием и нейротоксичны, вызывают вторичную иммунодепрессию, вторичную анемию, угнетают биосинтез белка и эритропоэз, тормозят активность многих ферментов, нарушают течение фаз воспалительного процесса.

Уровень СМ в крови и моче определяют скрининговым тестом, а также путем спектрофотометрии в ультрафиолетовой зоне по длине волны 254 и 280 мм на спектрофотометре ДИ-8Б, а также динамической спектрофотометрии с компьютерной обработкой в диапазоне волн 220—335 нм на том же спектрометре фирмы Beckman. За норму принимают содержание СМ в крови, равное 0,24 ± 0,02 усл. ед., а в моче — 0,312 ± 0,09 усл. ед.
Будучи нормальными продуктами жизнедеятельности организма, они удаляются из него в норме ночками путем гломерулярной фильтрации на 0,5 %; 5 % их утилизируется другим путем. Все фракции СМ подвергаются канальцевой реабсорбции.

Неплазменные (тканевые) уропротеины

Кроме белков плазмы крови, в моче могут быть неплазменные (тканевые) протеины. По данным Buxbaum и Franklin (1970), неплазменные белки составляют приблизительно 2/3 всех биоколлоидов мочи и значительную часть уропротеинов при патологической протеинурии. Тканевые белки попадают в мочу непосредственно из почек или органов, анатомически связанных с мочевыми путями, или попадают из других органов и тканей в кровь, а из нее через базальные мембраны клубочков почки — в мочу. В последнем случае экскреция в мочу тканевых протеинов происходит аналогично выведению плазменных белков различной молекулярной массы. Состав неплазменных уропротеинов чрезвычайно разнообразен. Среди них гликопротеины, гормоны, антигены, ферменты (энзимы).

Тканевые протеины в моче выявляют с помощью обычных методов белковой химии (ультрацентрифугирование, гель-хроматография, различные варианты электрофореза), специфических реакций на ферменты и гормоны и иммунологических методов. Последние позволяют также определить концентрацию неплазменного уропротеина в моче и в ряде случаев определить тканевые структуры, ставшие источником его появления. Основным методом выявления в моче неплазменного белка является иммунодиффузионный анализ с антисывороткой, полученной иммунизацией экспериментальных животных мочой человека и истощенной (адсорбированной) в последующем белками плазмы крови.

Исследование ферментов в крови и моче

При патологическом процессе наблюдаются глубокие нарушения жизнедеятельности клеток, сопровождающиеся выходом внутриклеточных ферментов в жидкостные среды организма. Энзимодиагностика базируется на определении ряда ферментов, выделившихся из клеток пораженных органов и не свойственных сыворотке крови.
Исследования нефрона человека и животных показали, что в отдельных его частях имеется высокая ферментативная дифференциация, тесно связанная с функциями, которые выполняет каждый отдел. В клубочках почки содержится относительно небольшое количество различных энзимов.

Клетки почечных канальцев, особенно проксимальных отделов, содержат максимальное количество энзимов. Высокая их активность наблюдается в петле Генле, прямых канальцах и собирательных трубочках. Изменения активности отдельных энзимов при различных заболеваниях почек зависят от характера, остроты и локализации процесса. Они наблюдаются до появления морфологических изменений в почках. Поскольку содержание различных ферментов четко локализовано в нефроне, определение того или иного фермента в моче может способствовать топической диагностике патологического процесса в почках (клубочки, канальцы, корковый или мозговой слой), дифференциальной диагностике почечных заболеваний и определению динамики (затухание и обострение) процесса в почечной паренхиме.

Дли дифференциальной диагностики заболеваний органов мочеполовой системы применяют определение активности в крови и моче следующих ферментов: лактатдегидрогеназы (ЛДГ), лейцинаминопептидазы (ЛАП), кислой фосфатазы (КФ), щелочной фосфатазы (ЩФ), β-глюкуронидазы, глютамино-щавелевоуксусной трансаминазы (ГЩТ), альдолазы, трансамидиназы и др. Активность ферментов в сыворотке крови и в моче определяют с помощью биохимических, спектрофотометрических, хроматографических, флуориметрических и хемилюминесцентных методов.

Энзимурия при заболеваниях почек более выражена и закономерна, чем энзимемия. Она особенно сильно выражена в острой стадии заболевания (острый пиелонефрит, травма, распад опухоли, инфаркт почки и т.д.). При этих заболеваниях обнаруживается высокая активность трансамидиназы, ЛДГ, ЩФ и КФ, гиалуронидазы, ЛАП, а также таких неспецифических энзимов, как ГЩТ, каталаза [Полянцева Л.Р., 1972].

Селективная локализация ферментов в нефроне при обнаружении ЛАП и ЩФ в моче позволяет с уверенностью говорить об острых и хронических заболеваниях почек (острая почечная недостаточность, некроз почечных канальцев, хронический гломерулонефрит) [Шеметов В.Д., 1968]. По данным А.А.Карелина и Л.Р.Полянцевой (1965), трансамидиназа содержится лишь в двух органах — почке и поджелудочной железе. Она является митохондриальным ферментом почек и в норме в крови и моче отсутствует. При различных заболеваниях почек трансамидиназа появляется в крови и в моче, а при поражении поджелудочной железы — только в крови.

Дифференциальным тестом в диагностике гломерулонефрита и пиелонефрита Krotkiewski (1963) считает активность ЩФ в моче, повышение которой более характерно для пиелонефрита и диабетического гломерулосклероза, чем для острого и хронического нефрита. Нарастающая в динамике амилаземия при одновременном снижении амилазурии может указывать на нефросклероз и сморщивание почки, ЛАП имеет наибольшее значение при патологических изменениях в клубочках и извитых канальцах почки, поскольку содержание ее в этих отделах нефрона более высокое [Шепотиновский В.П. и др., 1980]. Для диагностики волчаночного нефрита рекомендуется определение β-глюкуронидазы и КФ [Приваленко М.Н. и др., 1974].

При оценке роли энзимурии в диагностике заболеваний почек следует учитывать следующие положения. Энзимы, будучи по своей природе белками, при малой молекулярной массе могут проходить через неповрежденные клубочки, определяя так называемую физиологическую энзимурию. Среди этих энзимов постоянно определяются в моче α-амилаза (относительная молекулярная масса 45 ООО) и уропепсин (относительная молекулярная масса 38000).

Наряду с низкомолекулярными энзимами в моче здоровых лиц могут быть обнаружены в небольшой концентрации и другие энзимы: ЛДГ, аспартат- и аланинаминотрансферазы, ЩФ и КФ, мальтаза, альдолаза, липаза, различные протеазы и пептидазы, сульфатаза, каталаза, рибонуклеаза, пероксидаза .

Высокомолекулярные энзимы с относительной молекулярной массой больше 70000-100000, по мнению Richterich (1958) и Hess (1962), могут проникать в мочу лишь при нарушении проницаемости клубочкового фильтра. Нормальное содержание ферментов в моче не позволяет исключить патологический процесс в почке при окклюзии мочеточника. При эпзимурии возможен выход энзимов не только из самих почек, но и из других паренхиматозных органов, клеток слизистых оболочек мочевых путей, предстательной железы, а также форменных элементов мочи при гематурии или лейкоцитурии.

Большинство энзимов неспецифично по отношению к почке, поэтому откуда происходят энзимы, обнаруженные в моче здоровых и больных, установить трудно. Однако степень энзимурии даже дли неспецифичных энзимов при поражении почек бывает выше нормы или той, которая наблюдается при заболеваниях других органов. Более ценную информацию может дать комплексное исследование в динамике ряда ферментов, особенно органоспецифичных, таких как трансаминаза.

В решении вопроса о почечном происхождении энзима в моче помогает исследование изоэнзимов с выявлением фракций, типичных для изучаемого органа. Изоэнзимы — это энзимы, изогенные по действию (катализируют одну и ту же реакцию), но гетерогенные по химической структуре и другим свойствам. Каждая ткань имеет характерный для нее изоэнзимный спектр. Ценными методами разделения изоэнзимов являются электрофорез в крахмальном и полиакриламидном геле, а также ионообменная хроматография.

Белок Бенс-Джонса

При миеломной болезни и макроглобулинемии Вальденстрема в моче обнаруживают белок Бенс-Джонса. Метод обнаружения названного белка в моче основан на реакции термопреципитации. Применявшиеся ранее методы, с помощью которых оценивают растворение этого белка при температуре 100 °С и повторное осаждение при последующем охлаждении, ненадежны, так как не все белковые тела Бенс-Джонса обладают соответствующими свойствами.

Более достоверно выявление этого парапротеина путем осаждения его при температуре 40 -60 °С. Однако и в этих условиях осаждения может не произойти в слишком кислой (рН < 3,0—3,5) или слишком щелочной (рН > 6,5) моче, при низкой ОПМ и низкой концентрации белка Бенс-Джонса. Наиболее благоприятные условия для его осаждения обеспечивает методика, предложенная Patnem: 4 мл профильтрованной мочи смешивают с 1 мл 2 М ацетатного буфера рН 4,9 и согревают 15 мин на водяной бане при температуре 56 °С. При наличии белка Бенс-Джонса в течение первых 2 мин появляется выраженный осадок.

При концентрации белка Бенс-Джонса меньше 3 г/л проба может быть отрицательной, но на практике это встречается крайне редко, поскольку его концентрация в моче, как правило, более значительна. На пробы с кипячением нельзя вполне полагаться. С полной достоверностью он может быть обнаружен в моче иммуно-электрофоретическим методом с использованием специфических сывороток против тяжелых и легких цепей иммуноглобулинов.

Предполагаемый срок родов определяется:

По дате последней менструации: к первому дню последней менструации прибавляют 280 дней и получают дату предполагаемого срока родов. Чтобы быстрей и проще установить этот срок, по предложению Негеле, от первого дня последней менструации отсчитывают назад 3 месяца и прибавляют 7 дней.

По овуляции: по менструальному циклу определяют, на какой день происходит овуляция. От первого дня последней менструации отсчитывают назад 3 месяца и прибавляют количество дней до овуляции.

По дате первого шевеления плода. К дате первого шевеления плода первородящих прибавляют 20 недель, у повторнородящих – 22 недели.

По сроку беременности, диагностированному при первой явке в женскую консультацию. Ошибка будет минимальной, если беременная обратилась к врачу во время первых 12 недель беременности.

По данным ультразвукового исследования.

По дате дородового отпуска. Срок дородового отпуска, начинается с 30 недель беременности. К этой дате прибавляют 10 недель. Для беременных в зоне ядерного полигона и ним приравненных, дородовый отпуск начинается с 27 недель беременности к этой дате прибавляют 13 недель.

Срок дородового отпуска.

Листок нетрудоспособности по беременности выдается одновременно на 126 дней, а проживающим в зоне ядерного полигона и к ним приравненным – 170 дней.

17. Определение белка в моче экспресс методом

Цель – определение белка в моче.

Показания – гипертензивные состояния при беременности, заболевания почек у беременной

Противопоказания – нет.

Возможные осложнения – нет

Ресурсы – судно, стерильная баночка, пробирки, 30% сульфосалициловая или 3% уксусная кислота, пипетка, спиртовая горелка.

Алгоритм действия :

1. Объясните беременной о необходимости определения белка в моче.

2. Попросите беременную собрать мочу в стерильную баночку.

3. Проба с сульфосалициловой кислотой : в пробирку налейте 4-5 мл мочи добавьте 6-10 капель кислоты. При наличии белка в моче образуется осадок или муть.

4. Проба с 3% уксусной кислотой : в пробирку налейте 8-10 мл мочи, прокипятите на спиртовой горелке, если в моче содержится белок она помутнеет. К помутневшей моче добавьте несколько капель 3% раствор уксусной кислоты. Если в моче исчезнет муть – проба отрицательная.

Примечания. Определяется в приемном отделении родовспомогательного учреждения.

18.Роды. Алгоритм определения биологической активности матки к родам "Окситоциновый тест"

Что еще почитать