Разложение функции в ряд тейлора, маклорена, лорана

Разложение функции в ряд Тейлора, Маклорена и Лорана на сайт для тренировки практических навыков. Это разложение функции в ряд дает представление математикам оценить приближенное значение функции в некоторой точки области ее определения. Намного проще вычислить такое значение функции, по сравнению с применением таблицы Бредиса, так неактуальной в век вычислительной техники. В ряд Тейлора разложить функцию означает вычислить коэффициенты перед линейными функциями этого ряда и записать это в правильном виде. Путают студенты эти два ряда, не понимая, что является общим случаем, а что частным случаем второго. Напоминаем раз и навсегда, ряд Маклорена - частный случай Тейлоровского ряда, то есть это и есть ряд Тейлора, но в точке x = 0. Все краткие записи разложения известных функций, таких как e^x, Sin(x), Cos(x) и другие, это и есть разложения в ряд Тейлора, но в точке 0 для аргумента. Для функций комплексного аргумента ряд Лорана является наиболее частой задачей в ТФКП, так как представляет двусторонний бесконечный ряд. Он и является суммой двух рядов. Мы предлагаем вам посмотреть пример разложения прямо на сайте сайт, это сделать очень просто, нажав на "Пример" с любым номером, а затем кнопку "Решение". Именно такому разложению функции в ряд сопоставлен мажорирующий ряд, ограничивающий функцию исходную в некоторой области по оси ординат, если переменная принадлежит области абсцисс. Векторному анализу поставляется в сравнение другая интересная дисциплина в математике. Поскольку исследовать нужно каждое слагаемое, то необходимо достаточно много времени на процесс. Всякому ряду Тейлора можно сопоставить ряд Маклорена, заменив x0 на нуль, а вот по ряду Маклорена порой не очевидно представление ряда Тейлора обратно. Как бы это и не требуется делать в чистом виде, но интересно для общего саморазвития. Всякому ряду Лорана соответствует двусторонний бесконечный степенной ряд по целым степеням z-a, другими словами ряд вида того же Тейлора, но немного отличающегося вычислением коэффициентов. Про область сходимости ряда Лорана расскажем чуть позже, после нескольких теоретических выкладок. Как и в прошлом веке, поэтапного разложения функции в ряд вряд ли можно достичь только лишь приведением слагаемых к общему знаменателю, так как функции в знаменателях нелинейные. Приближенное вычисление функционального значения требует постановка задач. Задумайтесь над тем, что когда аргумент ряда Тейлора есть линейная переменная, то разложение происходит в несколько действий, но совсем другая картина, когда в качестве аргумента раскладываемой функции выступает сложная или нелинейная функция, тогда очевиден процесс представления такой функции в степенной ряд, поскольку, таким образом, легко вычислить, пусть и приближенное, но значение в любой точке области определения, с минимальной погрешностью, мало влияющей на дальнейшие расчеты. Это касается и ряда Маклорена. когда необходимо вычислить функция в нулевой точке. Однако сам ряд Лорана здесь представлен разложением на плоскости с мнимыми единицами. Также не без успеха будет правильное решение задачи в ходе общего процесса. В математике такого подхода не знают, но он объективно существует. В результате вы можете прийти к выводу так называемых поточечных подмножеств, и в разложении функции в ряд нужно применять известные для этого процесса методы, таких как применение теории производных. Лишний раз убеждаемся в правоте учителя, который сделал свои предположения на счет итогов пост вычислительных выкладок. Давайте отметим, что ряд Тейлора, полученный по всем канонам математики, существует и определен на всей числовой оси, однако, уважаемые пользователи сервиса сайт, не забывайте вид исходной функции, ведь может получиться так, что изначально необходимо установит область определения функции, то есть выписать и исключить из дальнейших рассмотрений те точки, при которых функция не определена в области действительных чисел. Так сказать это покажет вашу расторопность при решении задачи. Не исключением высказанного будет и построение ряда Маклорена с нулевым значением аргумента. Процесс нахождения области определения функции никто при этом не отменял, и вы обязаны подойти со всей серьезностью к этому математическому действию. В случае содержания рядом Лорана главной части, параметр "a" будет называться изолированной особой точкой, и ряд Лорана будет разложен в кольце - это пересечение областей сходимости его частей, отсюда будет следовать соответствующая теорема. Но не все так сложно как может показаться на первый взгляд неопытному студенту. Изучив как раз ряд Тейлора, можно с легкостью понять ряд Лорана - обобщенный случай на расширение пространства чисел. Любое разложение функции в ряд можно производить только в точке области определения функции. Следует учитывать свойства таких функций, например, как периодичность или бесконечная дифференцируемость. Также предлагаем вам воспользоваться таблицей готовых разложений в ряд Тейлора элементарных функций, поскольку одна функция может быть представлена до десятков отличных от друг друга степенных рядов, что можно видеть из применения нашего калькулятора онлайн. Онлайн ряд Маклорена проще простого определить, если воспользоваться уникальным сервисом сайт, вам достаточно только ввести правильную записанную функцию и представленный ответ получите в считанные секунды, он будет гарантированно точным и в стандартно записанном виде. Можете переписать результат сразу в чистовик на сдачу преподавателю. Правильно бы сначала определить аналитичность рассматриваемой функции в кольцах, а затем однозначно утверждать, что она разложима в ряд Лорана во всех таких кольцах. Важен момент чтобы не упустить из вида содержащие отрицательных степеней членов ряда Лорана. На этом сосредоточьтесь как можно сильнее. Применяйте с пользой теорему Лорана о разложении функции в ряд по целым степеням.

Теорема о разложении аналитической функции в степенной ряд

(Теорема Тейлора).

Пусть функция - аналитическая в односвязной областис кусочно-гладкой границей
,
. Тогда функция
разлагается в степенной ряд по степеням
в круге
(расстояние от точки до границы области).

Доказательство. Точкалежит внутри, поэтому можно выбрать целиком лежит в области



.

Функция
- аналитическая ви на
. То есть
на.


.


и равномерно сходится по признаку Вейерштрасса в круге


. В самом деле, по следствию из интегральной формулы Коши

. Заметим, что точно так же записывался ряд Тейлора для функции действительной переменной:
. Таким образом, показано, что функция, аналитическая в круге, разлагается в нем в сходящийся степенной ряд. Это разложение единственно и оказываетсярядом Тейлора для данной функции. Коэффициенты разложения вычисляются однозначно по формулам

.

Неравенства Коши.


, где

. Таким образом, справедливынеравенства Коши для коэффициентов ряда Тейлора разложения функции в окрестности точки
. По следствию из интегральной теоремы Коши для многосвязной области здесьRможно выбрать любым, лишь быRне превышало расстояния от точкидо границы областиG.

Ряд Лорана.

Рядом Лорана называется ряд
=
+
.

Второе слагаемое представляет собой степенной ряд и, как всякий степенной ряд, сходится в круге
. Это слагаемое называетсяправильной частью ряда Лорана и является, как сумма степенного ряда аналитической функцией.

Первое слагаемое называется главной частью ряда Лорана. Делая в нем замену
, запишем главную часть в виде
. Относительно переменнойt

это – степенной ряд, сходящийся в некотором круге
. Возвращаясь к переменнойz, получим, что главная часть сходится во внешности круга, радиусаr:

. Ряд Лорана сходится в области, представляющей собой пересечение областей сходимости правильной и главной частей. Поэтомуобласть сходимости ряда Лорана представляет собой круговое кольцо
. Радиусы сходимостиr,Rопределяются для степенных рядов обычным образом, сходимость на границах кольца также исследуется, как в степенных рядах. Кольцо может быть вырождено, представлять собой окружность, еслиr= R или пустое множество, если r > R.

Теорема Лорана.

Функция
, аналитическая в круговом кольце

и на его границе,разлагается в нем в сходящийся ряд Лорана.

Рассмотрим круговое кольцо
, построим внутри него еще одно круговое кольцо с радиусами
так, что
. Рассмотрим произвольную точкуво внутреннем кольце, проведем из нее, как из центра окружность радиусомтак, чтобы она лежала целиком внутри внутреннего кольца.

По теореме Коши для многосвязной области

=
+

По интегральной формуле Коши
=
-
.

Рассмотрим отдельно каждое слагаемое.

1) В первом слагаемом повторим все выкладки из доказательства теоремы Тейлора, считая
,
.

Так как , то полученный ряд мажорируется сходящейся бесконечно убывающей геометрической прогрессией
и равномерно сходится по признаку Вейерштрасса в круге
.

Функция
- аналитическая на
, следовательно, она непрерывна и ограничена на. То есть
на.

Умножим полученный ряд на непрерывную ограниченную функцию
.

. Этот ряд мажорируется сходящейся бесконечно убывающей геометрической прогрессией
и равномерно сходится по признаку Вейерштрасса в круге
. Следовательно, его можно почленно интегрировать, получая сходящийся ряд.

, где коэффициенты ряда Тейлора равны

=

).

2) Рассмотрим второе слагаемое, полагая
,
.

Это справедливо, так как здесь
.

Функция
- аналитическая на
, следовательно, она непрерывна и ограничена на. То есть
на.

Умножим полученный ряд на непрерывную ограниченную функцию

. Этот ряд мажорируется сходящейся бесконечно

Этот ряд мажорируется сходящейся бесконечно убывающей геометрической прогрессией
и равномерно сходится по признаку Вейерштрасса во внешности круга
. Следовательно, его можно почленно интегрировать, получая сходящийся ряд.


, где коэффициенты ряда Тейлора равны
.
(По следствию из теоремы Коши для многосвязной области интегрирование поможно заменить интегрированием по
).

Складывая полученные разложения для двух слагаемых, получим разложение функции в ряд Лорана


, где коэффициенты ряда Лорана раны .
.

Для коэффициентов ряда Лорана аналогично выводятся неравенства Коши
.

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

f(x)=

в точке x 0 = Количество элементов ряда 3 4 5 6 7


Использовать разложение элементарных функций e x , cos(x), sin(x), ln(1+x), (1+x) m

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .

Здесь мы рассмотрим разложения в ряды более широкого класса функций, чем рассматривали прежде, а именно: будем изучать такие (однозначные) функции, которые аналогичны не во всем круге z - zo z - zq г = 0, т.е. разложение функции в проколотой окрестности точки zq. Эти разложения позволяют изучать функции в окрестности точек, где они теряют аналитичность (особых точек).

Заметим, что степенных рядов нам теперь будет недостаточно, поскольку такими рядами представляются только функции, аналитические во всем круге z - zq (см. теорему 22.1). Но мы добавим к членам c n (z - zo) n с неотрицательными значениями п соответствующие члены с п = -1, -2,... и рассмотрим сумму двух рядов

Разложение функции f(z) в кольце будем искать в виде

причем под сходимостью ряда c n (z - zq)" понимается сходи-

мость обоих рядов в правой части (25.1). Как и в §22, мы докажем теоремы о существовании и единственности такого разложения. Начнем с теоремы существования.

Теорема 25.1 (теорема Лорана). Пусть функция f(z) аполитична а кольце V = {г z - zo:

коэффициенты которого определяются по формулой

(здесь р - произвольное число, заключенное между г и R).

Доказательство. Пусть z - какая-либо точка кольца V. Построим кольцо V = {г" C, - zq R"}, лежащее внутри кольца V и содержащее точку z. Для этого следует выбрать числа г" и R 1 так, чтобы г R" (рис. 47).

Обозначим через Г и Г> окружности 1C - zo = R" и |С - Zo = г"; обход обеих окружностей зададим против часовой стрелки. Через TV обозначим окружность |С - za = г" с обходом по часовой стрелке. Функция f(z) аналитична в замкнутой области V 7 , граница Г 7 которой состоит из кривых Гх и 17 (напомним, что при обходе границы область должна оставаться слева). По интегральной формуле Коши (см. теорему 18.1)

Разложение в ряд первого интеграла в правой части (25.4) проводится так же, как и в доказательстве теоремы 22.2. Функцию представляем в виде


причем ряд (25.5) сходится абсолютно и равномерно по переменному

С на IV Умножая равенства (25.5) на функцию ^-:/(?), ограничениям

ную на Г1 (согласно замечанию 20.5, равномерная сходимость рядов в (25.5) при этом нс нарушается), и почленно интегрируя вдоль IV получаем


Итак, первый интеграл в правой части (25.4) мы разложили в сходящийся ряд по степеням (z - г«). Второй интеграл в (25.4) придется разлагать иначе, поскольку для С € Гг будет z - zo > |С - Zq и, следовательно, ряды в (25.5) расходятся. Имеем

Снова применяя формулу (22.С), получаем

При всех С € Г2 выполняются равенства

Поскольку ряд qi n сходится, то в силу признака равномерной

сходимости Вейерштрасса (теорема 20.2) ряд в правой части (25.8) сходится на Г о абсолютно и равномерно по переменному?. Нам удобно переписать этот ряд в несколько иной форме, введя новый индекс суммирования к равенством к = -п - 1, т.е. п = -к - 1. Когда п принимает значения 0,1,2,..., индекс к пробегает значения -1, -2, -3____

Умножим равенства (25.9) на f(Q (что не нарушит равномерной

сходимости рядов в (25.9) на окружности Гг) и почленно проинтегрируем вдоль Гг:


Индекс к в формулах (25.10), (25.11) можно заменить любой другой буквой; в частности, можно снова обозначить его через н, где п = - 1,- 2,... Подставляя разложения (25.6) и (25.10) в (25.4), придем к равенству (25.2). Функция . является аналитической

(С - zo) n + l

в кольце г г 0 р, такое что г то обе окружности Ti и Гг можно заменить окружностью |С - zq = р. При этом равенства (25.7) и (25.11) запишутся единой формулой (25.3). Теорема 25.3 доказана.

Ряд (25.2) по целым степеням (z - -го) (как положительным, так и отрицательным), коэффициенты которого определяются но форму-

лам (25.3), называется рядом Лорана функции f(z). Ряд ^2 c n (z -

п =0

  • - Zo) n называется правильной частью , а ряд c n (z - zq) u (пишут

также c n{ z - z o) n) - главной частью ряда Лорана (обоснован-

ность названий выяснится в дальнейшем).

Перейдем теперь к вопросу о единственности разложения (25.2).

Теорема 25.2 (теорема единственности разложения функции в ряд Лорана). Пусть в некотором, кольце V = {г z - zo (25.2). Тогда f(z ) является

аналитической в V функцией, а коэффициенты с п, п = 0, ±1, ±2.... разложения определяются однозначно по формулам, (25.3).

Доказательство. Так как по условию теоремы ряд (25.2) сходится в V, то сходятся оба ряда в правой части (25.1), состав-

ляющие ряд (25.2). Первый из них - ряд Y1 °n(z ~ z o) n ~ является

обычным степенным рядом, сходящимся в некотором круге с центром Zo и расходящимся вне этого круга. Поскольку этот ряд сходится в V , то все кольцо V лежит в круге сходимости. Так как сумма

степенного ряда аналитична в круге сходимости (свойство 21.6), то

сумма Si (.г) ряда c n (z - zq) h аналитична в V. По свойству 21.5,

этот ряд равномерно сходится в любом круге z - zq R"

но ряд c n{z - zo) n - Сделаем замену переменных, положив Z =

=-, к = - п. Тогда изучаемый ряд примет вид V C-uZ k . Этот

z ~ z o k=l

ряд является степенным рядом относительно переменного Z с центром Zo = 0: он сходится в некотором круге с R"o этот ряд сходится равномерно (свойство 21.5). Возвратимся теперь к переменному z. Тогда круг

/?о перейдет в множество --- z - zo > 1 /Ro, т.е. во внешность круга с центром zq радиуса 1/Ло- Таким образом, ряд

^2 c n (z - Zo) n сходится при |z - Zo > l/Ro к аналитической функ- п =-1

ции 5-2(г) и расходится при z - zo 1 /Rq. Поскольку этот ряд сходится в V, то все кольцо V лежит в области сходимости z - Zo > 1/Яо этого ряда. При этом в области z - zo > 1 //?о с Н® Но сходимость будет равномерной. В частности, рад равномерно сходится при |z - zo > г ", если г" > г.

Итак, оба ряда в правой части (25.1) сходятся в кольце V и их суммы Si (г) и S-j(z) аналитичны в V. Значит, функция f(z) = Si (z) + 4* S-z(z) аналитична в V .

Покажем, что коэффициенты с п разложения определяются однозначно по формулам (25.3). Возьмем окружность Г = {z - zo = /?}, где г Подберем числа г" и R" так, чтобы г Оба ряда в правой части (25.1) равномерно сходятся в кольце V = = {г; z - Zo R 1 }- Значит, и ряд

сходится в нем равномерно. Это свойство сохранится после умножения обеих частей на произвольную степень (z - zo)~ n ~ l , n = О, ±1, ±2_____ так как каждая из этих степеней является функцией, ограни

ченной в V (см. замечание 20.5):

В силу теоремы 20.4 полученный ряд можно почленно интегрировать вдоль Г:

Воспользуемся теперь равенством (15.7):

согласно которому все интегралы в левой части (25.12) равны нулю, кроме одного, для которого к - п - 1 = - 1 (т.е. к = гг) и который равен 2тгг. Поэтому в сумме из (25.12) остается лишь одно слагаемое при к = п, и мы получаем

что равносильно равенствам (25.3). Теорема 25.2 доказана.

При доказательстве теоремы 25.2 мы установили, что ряд (25.2) сводится к объединению двух степенных рядов, один из которых сходится внутри некоторот круга с центром zq, а другой - вне круга меньшего радиуса с гем же центром (если бы радиус второго круга был больше, то множество сходимости ряда (25.2) было бы пустым). Обозначим радиусы этих кругов R и г соответственно (здесь не утверждается, ч то эти числа совпадают с внешним и внутренним радиусами кольца V в теоремах 25.1, 25.2). Отсюда и из свойств степенных рядов (см. §21) вытекают следующие свойства ряда (25.2).

Свойство 25.3. Множеством сходимости ряда (25.2) является кольцо V = {г z - zq R) с возможным добавлением некоторых или всех точек на его границе. При этом возможны случаи г = 0 и R = оо.

Свойство 25.4. Сумма 5(г) ряда (25.2) является аналитической функцией внутри кольца V .

Свойство 25.5. Ряд (25.2) можно почленно интегрировать и почленно дифференцировать внутри кольца V любое число jhm. Полученные при этом ряды имеют то же кольцо сходимости V , что

и исходный ряд (25.2); сходимость в граничных точках может не сохраняться.

Свойство 25.6. Если V = {г Zo является кольцом сходимости ряда Лорана функции f(z ) и 0

Доказательство. Ряд Лорана функции /(z) есть объединено оо 1

ние двух степенных рядов °n(z ~ z o) n и c_*Z*, где Z =-.

n=0 k- z - Z 0

Кругами СХОДИМОСТИ ЭТИХ рядов ЯВЛЯЮТСЯ z - 2о| R и z - zo = R и = 1/г (т.е. z - zo = г) лежат особые точки

функций Si(z) = c n{z - Zq) u и S- 2 (z) = Cn(z-z 0) n соответ-

ственно. Следовательно, на этих окружностях лежат особые точки функции f(z) = Si (г) + S- 2 (z), что и требовалось доказать.

Дчя нахождения разложений в ряд Лорана широко используются те же приемы, что и для разложения в ряд Тейлора, а именно метод подстановки, почленное интегрирование и дифференцирование рядов и т.д.

П р и м е р 25.7. Найти все лорановские разложения функции

/( г) = f по степеням (z - 1).

" z(z - 1)

Решение. Сделаем замену переменного: w = z - 1, т.е. z = w +

1. Выполнив подстановку, получим функцию г/(гс) = . w . . Раз-

{w + 1)wj

ложим полученную дробь в сумму пр(хдейших дробей (подробнее о разложении в сумму простейших дробей см. §32). Разложение будем искать в виде

где А и D числа, которые пред сшит найти. С этой целью приведем дроби, стоящие справа, к общему знаменателю:

Отсюда следует, что w + 2 = A(w + 1) + Bw, причем равенство выполнено при всех значениях w , включая w = 0 и w = - 1 (это следует из непрерывности левой и правой частей этого равенства). При w = 0 получаем 2 = .4, т.е. А = 2; подставляя w = -1, имеем 1 = -В, т.е. В = - 1. Таким образом,


Эта функция имеет особые точки w = 0, w = - 1 и, следовательно, аполитична в кольцах V’i = {0 w

При w > 1 полученный ряд перестает сходиться. Поэтому для разложения функции g(w) в кольце У 2 следует преобразовать дробь:

При |ш| > 1 будет -

вместо z подставить в нее l/w. Выполняя указанные подстановки, получим


(мы сделали замену к = - (п + 1) и воспользовались равенством (- 1)* = (-I) - *). Возвращаясь к переменному z - w + 1, получаем искомые разложения функции f(z):


ного члена -- (все остальные коэффициенты главной части рав

ны нулю), а ряд в (25.13) дает правильную часть разложения. При 1 z - 1| z - 1| = 0 с радиусом 0и|г-1| = 1с радиусом 1) содержат особые точки функции f(z).

Что еще почитать