Серебро свойства, сплавы и применение. Серебро: история открытия элемента

Медь, серебро и золото являются d -элементами, простые вещества – металлы: конфигурация наружных электронных оболочек атомов(n-1)d 10 ns 1 :

29 Cu[ 18 Ar]3d 10 4s 1 ; 47 Ag[ 34 Xe] 4d 10 5s 1 ; 79 Au[ 54 Kr] 4f 14 5d 10 6s 1

Завершение предвнешней оболочки происходит за счет перехода одного s -электрона наружного слоя на предвнешнюю d -орбиталь. Такая d -обо­лочка недостаточно стабильна: в образовании химических связей у элементов подгруппы меди могут принимать участие и d - электроны предвнешнего слоя; поэтому Cu , Ag и Au могут проявлять степени окисления +1, +2, +3. На внешней электронной оболочке атомы меди, серебра и золота содержат по 1 электрону, как у атомов щелочных металлов, но на предвнешней – 18 – электронные оболочки (у атомов щелочных металлов – 8ē). Наличие 18 ē в предвнешней оболочке и более высокий заряд ядра у элементов подгруппы меди приводит к эффекту её сжатия. Вследствие этого радиусы атомов Cu , Ag и Au меньше радиусов атомов щелочных металлов тех же периодов, а энергия ионизации больше. Поэтому медь, серебро и золото резко отличаются от щелочных металлов более высокими значениями плотностей, температур плавления и кипения, положительными значениями электродных потенциалов, малой химической активностью (табл. 3, 4). Химическая активность убывает от меди к золоту: серебро и золото – благородные металлы, трудно поддающиеся окислению. Благодаря стойкости по отношению к химическим воздействиям, Cu , Ag и Au с древнейших времен находят широкое практическое применение.

Таблица 3

Атомные характеристики элементов

Элемент

Cu

Ag

Au

Атомный номер

Ковалентный радиус, нм

Металлический радиус, нм

Радиус иона, нм

Э +

Э 2+

Э 3+

Электроотрицательность

Первый потенциал ионизации, В

Степени окисления (выделены наиболее устойчивые сте­пе­ни окисления)

1,+2 ,+3

+1 ,+2,+3

Таблица 4

Основные физико-химические свойства металлов

Легче всего эти металлы реагируют с галогенами: Cu – при обычной температуре, а Ag и Au – при нагревании. Сухой кислород при обычной температуре на них не действует.

При нагревании до температуры красного каления медь окисляется кислородом до CuO , при более высокой температуре до Cu 2 O :

2CuO ( т ) Cu 2 O ( т ) + 1 / 2 O 2( г ) ;

Серебро и золото не окисляются кислородом и при нагревании. С серой соединяется не только медь, но и серебро. С водородом, азотом и углеродом они не образуют соединений даже при высоких температурах.

В электрохимическом ряду Cu , Ag и Au стоят правее водорода, поэтому они не вытесняют водород из растворов кислот. На медь и серебро действуют только азотная и концентрированная серная кислоты (при нагревании):

3Cu ( т ) + 2HNO 3(p) + 6HNO 3(p) = 3 Cu(NO 3 ) 2( в ) + 2NO ( г ) + 4H 2 O ( ж )

Cu ( т ) + 2HNO 3( к ) + 2HNO 3( к ) = Cu(NO 3 ) 2( в ) + 2NO 2( г ) + 2H 2 O ( ж )

2Ag ( т ) + H 2 SO 4( к ) + H 2 SO 4( к ) = Ag 2 SO 4( в ) + SO 2( г ) + 2H 2 O ( ж )

(в этих кислотах окислителем служат не ионы Н + , а ионы NO 3 - и SO 4 2- ).

Золото растворяется в селеновой кислоте, «царской водке», хлорной воде и насыщенной хлором хлороводородной кислоте:

2 Au ( т ) + 6 H 2 SeO 4( к ) = Au (SeO 4 ) 3( в ) + 2 SeO 2( г ) + 6 H 2 O

Au (т) + HNO 3(к) + 4 HCl (к) = H AuCl 4 (в) + NO (г) + 2 H 2 O

2 Au (т) + 3 Cl 2(г) + 2 HCl (к) = 2 H AuCl 4 (в)

Все три металла легко растворяются в ртути, образуя сплавы-амаль­га­мы. Амальгама серебра, быстро твердеющая сразу же после приготовления, используется в стоматологии для пломбирования зубов.

Медь, серебро и золото образуют многочисленные сплавы друг с другом и с другими металлами. К действию щелочей в отсутствии окислителей они устойчивы. В присутствии CN - – ионов в водном растворе медь, серебро и золото окисляются кислородом, вследствие комплексообразования, а медь – ионом водорода воды:

4 Au ( т ) + 8 NaCN ( в ) + O 2( г ) + 2 H 2 O ( ж ) = 4 Na Au (CN ) 2 ( в ) + 4 NaOH ( в )

4 Ag (т) + 8 KCN (в) + O 2(г) + 2 H 2 O (ж) = 4 K Ag (CN ) 4 (в) + 4 KOH (в)

2 Cu + 4 KCN (в) + 2 H 2 O (ж) = 2 K Cu (CN ) 2 (в) + 2 KOH (в) + H 2(г)

Ионы металлов обладают окислительными свойствами , усиливающимися от Cu (II ) к Au (III ) , и высоким поляризующим действием , которым обусловлена окраска большинства соединений, способность к образованию комплексов, малая термическая прочность оксидов, гидроксидов и некоторых галогенидов.

Для ионов меди, серебра и золота весьма характерно образование комплексных соединений с анионами кислот, аммиаком, многими органи­чес­кими соединениями. В комплексных соединениях связи металл-лиганд в значительной степени ковалентны. Для Cu (I ) и ее аналогов характерны координационные числа 2 (с линейной структурой комплекса) и 4 (тетраэдрическая, иногда искаженная, структура), а для Cu (II ) также 6 (октаэдрическая) и возможно 6 (квадратная пирамида, например, в комплексе меди с -аланилгистидином, реже – тригональная бипирамида), для Au (III ) характерно координационное число – 4.

Оксиды и гидроксиды элементов 1В группы. В соответствии с харак­терными степенями окисления элементы образуют следующие окси­ды: Cu 2 O (красный), CuO (черный), Ag 2 O (темно-бурый), Au 2 O (фиолето­вый), Au 2 O 3 (черно-бурый). Они почти всегда нерастворимы в воде и обладают амфотерным характером (с трудом растворяются в концентрированных щелочах и концентрированных кислотах) с преобладанием основных свойств у оксидов меди и серебра и кислотных – у оксидов золота.

Оксиды серебра и золота при нагревании разлагаются с выделением кислорода:

2 Ag 2 O (т) = 4 Ag (т) + O 2(г)

Cu 2 O образуется при действии восстановителя – глюкозы, формалина, гидразина или гидроксиламина – на щелочной раствор фелинговой жидкости (см. ниже) или сульфата меди (II) при нагревании по схеме:

CuSO 4( в ) + 2NaOH ( в ) = Cu(OH) 2( т ) + Na 2 SO 4( в )

O O

2

Сначала выпадает желтый

осадок CuOH ,

переходящий в красный Cu 2 O

Cu(OH) 2 + C = Cu 2 O + C + 2H 2 O

H OH

(CHOH) 4 (CHOH) 4

CH 2 OH CH 2 OH

CuO получают при нагревании меди до 400–800 о С в присутствии кислорода. Выше 1100 о С оксид разлагается по вышеприведённой схеме:

2CuO ( т ) Cu 2 O ( т ) + 1 / 2 O 2( г )

CuO легко образуется при термическом разложении основного карбоната меди или гидроксида меди (II):

Cu 2 (OH) 2 CO 3( т ) = 8CuO ( т ) + H 2 O ( ж ) + CO 2( г )

Cu(OH) 2( т ) = CuO ( т ) + H 2 O ( ж )

Гидроксиды CuOH , Cu (OH ) 2 , AgOH , AuOH и Au (OH ) 3 малорастворимы в воде, термически малоустойчивы, легко отщепляют воду, переходя в оксиды. Поэтому щелочи из раствора соли серебра осаждают бурый оксид серебра (I):

2 AgNO 3( в ) + 2 NaOH ( в ) = Ag 2 O ( т ) + H 2 O ( ж ) + 2 NaNO 3( в ) .

Cu (OH ) 2 осаждается в виде студенистой голубоватой массы при действии щелочи на соли меди (II):

CuSO 4(в) + 2 NaOH (в) = Cu (OH ) 2(т) + Na 2 SO 4(в) .

Он легко растворим в кислотах с образованием аквакомплексов [ Cu (H 2 O ) 6 ] 2+ сине-зеленого цвета, и только в сильно концентрированных растворах щелочей – с образованием гидроксокупратов:

Cu (OH ) 2(т) + 2 NaOH (конц) = Na 2 [ Cu (OH ) 4 ] (в)

Cu (OH ) 2(т) + 4 NH 3(г) = [ Cu (NH 3 ) 4 ](OH ) 2(в) .

Реакция образования комплексного иона [ Cu (NH 3 ) 4 ] 2+ темно-синего цвета используется в аналитической химии для обнаружения иона меди (II).

Константа нестойкости аммиаката меди 2,1·10 -13 . Молекула аммиака является довольно сильным лигандом и вызывает значительное расщепление d – подуровня меди. Формируется низкоспиновый тетраэдрический парамагнитный комплекс (наличие неспаренных электронов у иона Cu 2+ ), с максимумом поглощения видимого света с длиной волны λ = 304 нм, что соответствует энергии расщепления d – подуровня - 349 кДж/моль.

Гидроксид меди (II) хорошо растворяется в многоатомных спиртах (этиленгликоле, глицерине) и в растворах тартратов – солей вино­каменной кислоты, образуя комплексные соединения хелатного типа. Растворы окрашиваются в красивый темно-синий цвет. Например, фелингов раствор, приготовленный из сегнетовой соли K Na C 4 H 4 O 6 , CuSO 4 и NaOH , используется в биохимии для обнаружения и количественного опреде­ления восстановителей: альдегидов, моносахаридов, некоторых витаминов, гормонов. С восстановителями фелингов раствор на холоду выделяет CuOH желтого цвета, а при нагревании выпадает красный осадок Cu 2 O :

O O C O O C

H-C-OH C – O O – C H-C-OH COONa

HO-C-H + K 2 Na 2 H 2 HC – О – Cu – О –CH + NaOH+ H 2 O HO-C-H + 2HC-OH + Cu 2 O

оксид

H-C-OH CH-O O - -CH H-C-OH H–C–OH меди (I)

H-C-OH – COO – COO H-C-OH COOK

CH 2 OH CH 2 OH

D – глюкоза, Na, K-тартрат–комплексное соединение меди, D – глюконат натрия, Na,K– тартрат

Свойства С u 2+ образовывать в щелочной среде окрашенные в сине-фиолетовый цвет комплексные соединения с белками и биуретом (NH 2 CO NH CO NH 2 ), например:

NH 2 – CO – N – CO – NH 2

NH 2 – CO – N – CO – NH 2

– используют в биохимии для обнаружения пептидных связей. Реакция Cu 2+ с биуретом и белками называется биуретовой .

Au (OH ) 3 – бурого цвета – осаждается при действии щелочи на раствор AuCl 3 или H [ AuCl 4 ] . При его высушивании образуется AuO (OH ) – мета­зо­лотая кислота, а при осторожном нагревании до 140 – 150 о С получается оксид Au 2 O 3 , который разлагается на Au и О 2 при нагревании выше 160 о С.

Гидроксид золота (III) – амфотерное соединение с преобладанием кислотных признаков: Au (OH ) 3 легко растворяется в щелочах, образуя тетрагидроксоаураты (III):

Au(OH) 3 (т) + NaOH (в) = Na (в)

и в кислотах – с образованием анионных комплексов:

Au(OH) 3( т ) + 4HNO 3( р ) = H ( в ) + 3 H 2 O ( ж )

Оксиды и гидроксиды меди и серебра легко растворяются в водном растворе аммиака, образуя устойчивые комплексные основания, по силе приближающейся к щелочам, например:

Ag 2 O (т) + 4 NH 3(в) + H 2 O (ж) = 2[ Ag (NH 3 ) 2 ](OH ) (в)

Нужно иметь в виду, что при продолжительном стоянии раствора [ Ag (NH 3 ) 2 ] OH образуется черный осадок гремучего серебра AgN 3 – вещества с очень сильными взрывчатыми свойствами.

В растворах галогеноводородных кислот оксиды и гидроксиды меди и серебра образуют соли типа МеГ или МеГ 2 и ацидокомплексы:

Ag 2 O ( т ) + 2HCl ( в ) = 2AgCl ( т ) + H 2 O ( ж )

AgCl (т) + HCl (в) = H [ AgCl 2 ] (в) .

Соли меди, серебра и золота . Большинство солей одновалентных меди, серебра и золота трудно растворяются в воде. Малорастворимы галогениды, цианиды, сульфиды. Растворимость галогенидов уменьшается от фторидов к иодидам. Например, AgF – растворим в воде, остальные галогениды практически нерастворимы: К s (AgCl ) = 1,6·10 -10 , К s (AgBr ) = 4,0·10 -13 , а К s (AgI ) = 9.7·10 -17 . Комплексные соединения меди, серебра и золота боль­шей частью хорошо растворимы в воде, поэтому реакции комплексообразования часто используют для перевода малорастворимых солей в раствор.

Например, хлориды меди (I) и серебра растворяются в водном растворе аммиака:

AgCl (т) + 2 NH 3(в) = [ Ag (NH 3 ) 2 ] Cl (в) .

При действии HNO 3 на хлорид диамминсеребра выпадает осадок AgCl вследствие образования из NH 3 иона NH 4 + :

[ Ag (NH 3 ) 2 ] Cl (в) + HNO 3(в) = AgCl (т) + 2 NH 4 NO 3(в) .

Галогениды меди (I), серебра (I) и золота (I) легко образуют комплексы с тиосульфат- и цианид- лигандами: [ Cu (S 2 O 3 ) 2 ] 3- , [ Ag (S 2 O 3 ) 2 ] 3- , [ Cu (CN ) 2 ] - , [ Ag (CN ) 2 ] - , [ Au (CN ) 2 ] - , когда константы нестойкости этих комплексов меньше, чем константы растворимости галогенидов, например:

CuI ( т ) + 2Na 2 S 2 O 3( в ) = Na 3 ( в ) + NaI ( в )

AgCN (т) + KCN (в) = K [ Ag (CN ) 2 ] (в) ;

с концентрированными галогеноводородными кислотами дают комплексные анионы [ Cu Г 2 ] - , [ Ag Г 2 ] - , [ Au Г 2 ] и растворяются в галогенидах щелочных металлов:

AgI (т) + KI (в) = K [ AgI 2 ] (в) .

Ионы меди, серебра и золота проявляют окислительные свойства, например:

2AgNO 3( в ) + H 2 O 2 + 2KOH ( в ) = 2Ag + O 2 + 2KNO 3( в ) + 2H 2 O

2Cu(CH 3 COO) 2( в ) + 4HI ( в ) = 4CH 3 COOH ( в ) + 2CuI +I 2

3Na 2 ( в ) + 2AuCl 3( в ) + 6KOH ( в ) = 3Na 2 ( в ) + 2Au + 6HCl ( в )

Газообразный диоксид серы – SO 2 восстанавливает Cu 2+ в Cu + из кипящего концентрированного раствора Cu (CH 3 COO ) 2 в уксусной кислоте:

3Cu 2+ ( в ) + 2SO 2( в ) + 3H 2 O ( ж ) = CuSO 4( в ) + 6H + ( в ) + Cu 2 SO 3( т ) .

Вследствие окислительных свойств соли меди (I), серебра (I) и золота (I) ме­нее устойчивы, чем соли щелочных металлов. Так, галогениды сереб­ра разлагаются на простые вещества при действии света и при нагревании:

2 Ag Г = 2 Ag + Г 2

Соли Cu (I ) и Au (I ) легко диспропорционируют:

2CuCl = Cu + CuCl 2

3AuCl = 2Au + AuCl 3

Галогениды меди (I) образуются при восстановлении солей меди (II). Например, CuCl получают при нагревании смеси, содержащей CuCl 2 , концентрированную хлороводородную кислоту и порошок меди:

CuCl 2(в) + Cu + 2 HCl (в) = 2 H [ CuCl 2 ] (в)

При разбавлении водой малоустойчивый комплекс Н[ CuCl 2 ] диссоциирует на HCl и CuCl , выпадающий в осадок. Иодид меди (I) выделяется при действии иодида калия на сульфат меди (II):

2CuSO 4( в ) + 4KI ( в ) = 2CuI + I 2 + 2K 2 SO 4( в ) .

Галогениды серебра – Ag Г – образуются при непосредственном взаимодействии простых веществ или осаждением из раствора нитрата серебра: Ag + + Г = Ag Г (т) . Они светочувствительны, т.е. разлагаются (чернеют) на свету с выделением металлического серебра. На этом свойстве основано их применение в фотографии.

Действием восстановителей (формальдегида, глюкозы и др.) на аммиачные растворы солей серебра можно посеребрить стеклянные предметы (реакция «серебряного зеркала»):

O O

H – C + 2OH = H – C + 2Ag + 4NH 3 + H 2 O

H OH

Этим способом изготавливают зеркала, серебрят внутреннюю поверхность в термосах, в сосудах Дьюара – для уменьшения потери теплоты лучеиспусканием. Реакция «серебряного зеркала» – характерная реакция на ион Ag + .

Она используется для подтверждения подлинности фармацевтических препаратов с альдегидной группой в молекуле.

Из солей кислородсодержащих кислот растворимыми в воде являются AgNO 3 , AgClO 4 , AgClO 3 , а Ag 2 CO 3 , Ag 2 CrO 4 , Ag 2 S 2 O 3 и др. плохо растворимы.

Хорошо растворимый в воде нитрат серебра получают растворением металлического серебра в азотной кислоте. Бесцветные кристаллы AgNO 3 чернеют под влиянием света вследствие выделения металлического серебра. Гидролизу эта соль не подвергается. Нитрат серебра является исходным продуктом для получения других соединений серебра.

Соли двухвалентной меди получают действием кислот на CuO , Cu (OH ) 2 , CuCO 3 или Cu 2 (OH ) 2 CO 3 . Важнейшими растворимыми в воде солями меди (II) являются CuSO 4 · 5 H 2 O , CuCl 2 · 2 H 2 O , Cu (NO 3 ) 2 · 3 H 2 O . В нейтральных и кислых растворах ионы меди (II) гидратированы и образуют голубые аквакомплексы [ Cu (H 2 O ) 6 ] 2+ , которые довольно прочно удерживают молекулы воды. Окраска твердых солей различна. Например, безводный CuSO 4 бесцветен. Он получается при нагревании до температуры 105–120 о С синих кристаллов медного купороса CuSO 4 · 5 H 2 O . Строение пентагидрата сульфата меди представлено схемой:

Четыре молекулы воды в медном купоросе координированы вокруг иона меди (II) в плоскости, два сульфат-иона – по оси, а пятая молекула Н 2 О выполняет роль мостика, соединяющего водородными связями молекулы воды и SO 4 2– – группу, как показано на схеме.

Катионы меди – сильные комплексообразователи по отношению к ли­ган­дам, содержащим карбоксильную (–СОО - ) , амино (– NH 2 ), циано- (– CN –) , тиольную (–SH) группы. За счёт реакции с тиольными группами белков катионы меди инактивируют ферменты и разрушают нативную конформацию белка – на этом основано их антимикробное действие.

Ионы меди (II) образуют комплексные соединения катионного типа (аквакомплексы, аминокомплексы [ Cu (NH 3 ) 4 ] 2+ ), анионного (гидроксо- и ацидокомплексы) и нейтрального типа. Например, при взаимодействии CuSO 4 с NH 3 происходит реакция с образованием темно-синего раствора:

CuSO 4(в) + 4 NH 3(в) = [ Cu (NH 3 ) 4 ] SO 4(в)

Cu 2+ (в) + 4 NH 3(в) = [ Cu (NH 3 ) 4 ] 2+ (в) .

Гидроксокомплексы меди (II), содержащие комплексный гидроксокупрат-ион [ Cu (OH ) 4 ] 2- сине-фиолетового цвета, получают при растворении Cu (OH ) 2 в очень концентрированных растворах щелочей (см. выше). Гидроксокупраты (II) очень нестойки и при разбавлении щелочных растворов водой разлагаются с выделением осадка Cu (OH ) 2 .

Легко разлагаются при разбавлении водой галогенокупрат (II)-ионы и зеленая окраска переходит в голубую:

2- ( в ) + 4H 2 O ( ж ) 2+ ( в ) + 4Cl - ( в )

Ионы меди (II) подвергаются гидролизу и формируют кислую реакцию среды:

Cu 2+ (в) + НОН (ж) Cu ОН + (в) + Н + .

Карбонаты щелочных металлов из растворов солей меди (II) осаждают основной карбонат меди зелено-голубого цвета:

2CuSO 4( в ) + 2K 2 CO 3( в ) + H 2 O ( ж ) = Cu 2 (OH) 2 CO 3( т ) + 2K 2 SO 4( в ) + CO 2( г )

Сульфид меди CuS черного цвета нерастворим в воде и растворе HCl .

Из соединений золота (III) известны Au 2 O 3 , Au (OH ) 3 , галогениды – AuCl 3 , AuBr 3 , AuF 3 . Они проявляют амфотерные свойства, с преобладанием кислот­ных.

Трихлорид золота – AuCl 3 получают действием хлора на золото. При растворении трихлорида золота в воде образуется гидроксотрихлорзолотая (III) кислота:

AuCl 3( в ) + H 2 O ( ж ) = H [ Au (OH ) Cl 3 ] ( в ) .

При добавлении к AuCl 3 соляной кислоты образуется H [ AuCl 4 ] . Ее соли – галогенаураты (III) – хорошо растворимы в воде и органических растворителях. AuCl 3 и H [ AuCl 4 ] ּ4 H 2 O используют для получения других соединений золота.

Окислительные свойства Au (III ) выражены сильнее, чем у Ag (I ) и Cu (II ) :

H [ AuCl 4 ] (в) + 3 FeSO 4(в) = Au (т) + Fe 2 (SO 4 ) 3(в) + FeCl 3(в) + HCl (в)

Соли тяжелых металлов (меди, серебра, золота и др.) токсичны, так как образуют с белками нерастворимые соли, вызывая денатурацию белков. Однако медь является необходимым микроэлементом растительных и животных организмов и содержится в них в небольших количествах – около 100 мг. Она входит в состав белков: гемокупреина, церулоплазмина, купрпротеина, ряда ферментов и концентрируется преимущественно в печени, головном мозге, в крови. Средняя дневная доза потребления меди для человека 4–5 мг. Соединения меди необходимы для синтеза гемоглобина и фосфолипидов. Например, медьсодержащий белок плазмы крови – церулоплазмин (98 % меди, содержащейся в плазме крови) выполняет в организме многопрофильную функцию, выполняя роль не только резервуара для меди, но и транспортную функцию, регулирующую баланс меди в организме. Недостаток меди ведет к развитию анемии (разрушению эритроцитов), нарушению остеогенеза, нарушается нормальное развитие соединительных тканей и кровеносных сосудов, а избыток может повлечь перерождение печени.

Важную физиологическую роль выполняет фермент супероксиддис­му­таза, ускоряющий реакцию разложения супероксид-иона – О 2 - , возникающего в клетках вследствие свободнорадикального окисления веществ.

Не менее важную роль выполняет фермент цитохромоксидаза в дыхательной цепи.

У моллюсков и членистоногих кислород переносится медьсодержащим белком гемоцианином, находящимся только в плазме, а процесс связывания и освобождения кислорода происходит за счёт окисления и восстановления ионов меди (С u + , Cu 2+ ) в гемоцианине, что объясняет голубой цвет крови у этих организмов.

Сульфат меди CuSO 4 · 5 H 2 O применяется в качестве антисептического, вяжущего, прижигающего средства для наружного применения в глазной и урологической практике. При приеме внутрь оказывает рвотное действие. В малых дозах соли меди входят в состав препаратов, улучшающих кроветворение.

В организме взрослого человека обнаруживается около 1 мг серебра. Ионы серебра бактерицидны. Они убивают грамположительные и грамотрицательные микроорганизмы, а также вирусы, инактивируя их ферментативные центры. Бактерицидные свойства серебра использовали еще в Древнем Египте: для лечения ран накладывали на их поверхность металлические серебряные пластины. В настоящее время применяется «серебряная вода», «серебряная марля», нитрат серебра, который обладает антисептическим и прижигающим действием. Последнее обусловлено способностью AgNO 3 свертывать белки, превращая их в нерастворимые соединения при прижигании ран и язв. Для этих целей в медицине применяют нитрат серебра в виде палочек (Stilus Argenti nitrici ). В небольших концентрациях раствор нитрата серебра оказывает вяжущее и противовоспалительное действие. В медицине используют коллоидные препараты серебра (колларгол – 70 % Ag , протаргол – 8 % Ag и др.), где мелкодисперсное металлическое серебро связано с белком и лишь частично ионизировано. В них сохраняются дезинфицирующие свойства серебра, но пропадает прижигающее действие. Токсическое действие соединений серебра, как и в случае меди, обусловлено тем, что ионы серебра взаимодействуют с тиольными серо- и азотсодержащими группами белков, нуклеиновых кислот и других биоорганических веществ. При этом образуются биокластеры хелатного типа, вследствие чего белки становятся нерастворимыми, теряют ферментативную активность.

В организме взрослого человека обнаруживается до 10 мг золота. Препараты золота применяют также в качестве эффективных противовоспалительных средств. Золото, как благородный металл, устойчивый к окислению в различных средах, используют в стоматологии для изготовления зубных протезов. Некоторые соедиения золота являются фармпрепаратами.

Все растворимые соединения меди, серебра и золота токсичны, особенно соединения меди.

Среднее содержание Серебра в земной коре (кларк) 7·10 -6 % по массе. Встречается преимущественно в средне- и низкотемпературных гидротермальных месторождениях, в зоне обогащения сульфидных месторождений, изредка - в осадочных породах (среди песчаников, содержащих углистое вещество) и россыпях. Известно свыше 50 минералов Серебра. В биосфере Серебро в основном рассеивается, в морской воде его содержание 3·10 -8 %. Серебро - один из наиболее дефицитных элементов.

Физические свойства Серебра. Серебро имеет гране-центрированную кубич. решетку (а = 4,0772 Å при 20 °С). Атомный радиус 1,44 Å, ионный радиус Ag + 1,13 Å. Плотность при 20 °С 10,5 г/см 3 ; t пл 960,8 °С; T кип 2212 °С; теплота плавления 105 кДж/кг (25,1 кал/г). Серебро обладает наивысшими среди металлов удельной электропроводностью 6297 сим/м (62,97 ом -1 ·см -1) при 25 °С, теплопроводностью 407,79 Вт/(м·К.) при 18 °С и отражательной способностью 90-99% (при длинах волн 100000-5000 Å). Удельная теплоемкость 234,46 дж/(кг·К) , удельное электросопротивление 15,9 ном·м (1,59 мком·см) при 20 °С. Серебро диамагнитно с атомной магнитной восприимчивостью при комнатной температуре -21,56·10 -6 , модуль упругости 76480 Мн/м 2 (7648 кгс/мм 2), предел прочности 100 Мн/м 2 (10 кгс/мм 2), твердость по Бринеллю 250 Мн/м 2 (25 кгс/мм 2). Конфигурация внешних электронов атома Ag 4d 10 5s 1 .

Химические свойства Серебра. Серебро проявляет химические свойства, характерные для элементов Iб подгруппы периодической системы Менделеева. В соединениях обычно одновалентно.

Серебро находится в конце электрохимического ряда напряжений, его нормальный электродный потенциал Ag = Ag + + e - равен 0,7978 в.

При обычной температуре Ag не взаимодействует с О 2 , N 2 и Н 2 . При действии свободных галогенов и серы на поверхности Серебра образуется защитная пленка малорастворимых галогенидов и сульфида Ag 2 S (кристаллы серо-черного цвета). Под влиянием сероводорода H 2 S, находящегося в атмосфере, на поверхности серебряных изделий образуется Ag 2 S в виде тонкой пленки, чем объясняется потемнение этих изделий. Сульфид можно получить действием сероводорода на растворимые соли Серебра или на водные суспензии его солей. Растворимость Ag 2 S в воде 2,48·10 -3 моль/л (25 °С). Известны аналогичные соединения - селенид Ag 2 Se и теллурид Ag 2 Te.

Из оксидов Серебра устойчивыми являются оксид (I) Ag 2 O и оксид (II) AgO. Оксид (I) образуется на поверхности Серебра в виде тонкой пленки в результате адсорбции кислорода, которая увеличивается с повышением температуры и давления.

Ag 2 O получают действием КОН на раствор AgNO 3 . Растворимость Ag 2 O в воде - 0,0174 г/л. Суспензия Ag 2 O обладает антисептическими свойствами. При 200 °С оксид Серебра (I) разлагается. Водород, оксид углерода (II), многие металлы восстанавливают Ag 2 O до металлического Ag. Озон окисляет Ag 2 O с образованием AgO. При 100 °С AgO разлагается на элементы со взрывом. Серебро растворяется в азотной кислоте при комнатной температуре с образованием AgNO 3 . Горячая концентрированная серная кислота растворяет Серебро с образованием сульфата Ag 2 SO 4 (растворимость сульфата в воде 0,79% по массе при 20 °С). В царской водке Серебро не растворяется из-за образования защитной пленки AgCl. В отсутствие окислителей при обычной температуре НCl, HBr, HI не взаимодействуют с Серебром благодаря образованию на поверхности металла защитной пленки малорастворимых галогенидов. Большинство солей Серебра, кроме AgNO 3 , AgF, AgClO 4 , обладают малой растворимостью. Серебро образует комплексные соединения, большей частью растворимые в воде. Многие из них имеют практическое значение в химические технологии и аналитической химии, например комплексные ионы - , + , - .

Получение Серебра. Большая часть Серебра (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении Серебра из серебряных и золотых руд применяют метод цианирования - растворения Серебра в щелочном растворе цианида натрия при доступе воздуха:

2Ag + 4NaCN + ½O 2 + H 2 O = 2Na + 2NaOH.

Из полученных растворов комплексных цианидов Серебро выделяют восстановлением цинком или алюминием:

2 - + Zn = 2- + 2Ag.

Из медных руд Серебро выплавляют вместе с черновой медью и затем выделяют его из анодного шлама, образующегося при электролитической очистке меди. При переработке свинцово-цинковых руд Серебро концентрируется в сплавах свинца - черновом свинце, из которого его извлекают добавлением металлического цинка, образующего с Серебром нерастворимое в свинце тугоплавкое соединение Ag 2 Zn 3 , всплывающее на поверхность свинца в виде легко снимающейся пены.

Применение Серебра. Серебро используют преимущественно в виде сплавов: из них чеканят монеты, изготовляют бытовые изделия, лабораторную и столовую посуду. Серебро покрывают радиодетали для придания им лучшей электропроводности и коррозионной стойкости; в электротехнической промышленности применяются серебряные контакты. Для пайки титана и его сплавов используются серебряные припои; в вакуумной технике Серебро служит конструкционным материалом. Металлическое Серебро идет на изготовление электродов для серебряно-цинковых и серебряно-кадмиевых аккумуляторов. Оно служит катализатором в неорганических и органических синтезе (например, в процессах окисления спиртов в альдегиды и кислоты, а также этилена в окись этилена). В пищевой промышленности применяются серебряные аппараты, в которых приготовляют фруктовые соки. Ионы Серебра в малых концентрациях стерилизуют воду. Соединения Серебра (AgBr, AgCl, AgI) применяются для производства кино- и фотоматериалов.

Серебро в искусстве. Благодаря красивому белому цвету и податливости в обработке Серебро с глубокой древности широко используется в искусстве. Однако чистое Серебро слишком мягко, поэтому при изготовлении монет и различных художественных произведений в него добавляют цветные металлы, чаще всего медь. Средствами обработки Серебра и украшения изделий из него служат чеканка, литье, филигрань, тиснение, применение эмалей, черни, гравировки, золочения.

Высокая культура художественной обработки Серебра характерна для искусства эллинистического мира, Древнего Рима, Древнего Ирана (сосуды эпохи Сасанидов, 3-7 века), средневековой Европы. Разнообразием форм, выразительностью силуэтов, мастерством фигурной и орнаментальной чеканки и литья отличаются изделия из Серебра, созданные мастерами Возрождения и барокко (Б. Челлини в Италии, ювелиры из семейств Ямницеров, Ленкеров, Ламбрехтов и других в Германии). В 18 - начале 19 вв. ведущая роль в производстве изделий из серебра переходит к Франции (К. Баллен, Т.Жермен, Р. Ж. Огюст и других). В искусстве 19-20 веков преобладает мода на незолоченое серебро; среди технических приемов доминирующее положение занимает литье, распространяются машинные приемы обработки. В русском искусстве 19 - начала 20 вв. выделяются изделия фирм Грачевых, П. А. Овчинникова, П. Ф. Сазикова, П. К. Фаберже, И. П. Хлебникова. Творческое развитие традиций ювелирного искусства прошлого, стремление наиболее полно выявить декоративные качества Серебра характерны для советских изделий из Серебра, среди которых видное место занимают произведения народных мастеров.

Серебро в организме. Серебро - постоянная составная часть растений и животных. Его содержание составляет в среднем в морских растениях 0,025 мг на 100 г сухого вещества, в наземных - 0,006 мг;, в морских животных - 0,3-1,1 мг, в наземных - следовые количества (10 -2 -10 -4 мг).

У животных накапливается в некоторых эндокринных железах, пигментной оболочке глаза, в эритроцитах; выводится главным образом с фекалиями. Серебро в организме образует комплексы с белками (глобулинами крови, гемоглобином и других). Блокируя сульфгидрилъные группы, участвующие в формировании активного центра ферментов, Серебро вызывает ингибирование последних, в частности инактивирует аденозинтрифосфатазную активность миозина. При парентеральном введении Серебро фиксируется в зонах воспаления; в крови связывается преимущественно глобулинами сыворотки.

Препараты Серебра обладают антибактериальным, вяжущим и прижигающим действием, что связано с их способностью нарушать ферментные системы микроорганизмов и осаждать белки. В медицинской практике наиболее часто применяют нитрат серебра, колларгол, протаргол (в тех же случаях, что и колларгол); бактерицидную бумагу (пористая бумага, пропитанная нитратом и хлоридом Серебра) применяют при небольших ранах, ссадинах, ожогах и т. п.

Экономическое значение Серебра. Серебро в условиях товарного производства выполняло функцию всеобщего эквивалента наряду с золотом и приобрело, как и последнее, особую потребительную стоимость - стало деньгами. Товарный мир выделил Серебро в качестве денег потому, что оно обладает важными для денежных товаров свойствами: однородностью, делимостью, сохраняемостью, портативностью (высокой стоимостью при небольших объеме и массе), легко поддается обработке.

Первоначально Серебро обращалось в форме слитков. В странах Древнего Востока (Ассирия, Вавилон, Египет), а также в Греции и Риме Серебро было широко распространенным денежным металлом наряду с золотом и медью. В Древнем Риме чеканка монет из Серебра начата в 4-3 веках до нашей эры. Чеканка первых древнерусских монет из Серебра началась в 9-10 веках.

В период раннего средневековья преобладала чеканка золотой монеты. С 16 века в связи с недостатком золота, расширением добычи Серебра в Европе и притоком его из Америки (Перу и Мексики) Серебро стало основным денежным металлом в странах Европы. В эпоху первоначального накопления капитала почти во всех странах существовал серебряный монометаллизм или биметаллизм. Золотые и серебряные монеты обращались по действительной стоимости содержавшегося в них благородного металла, причем ценностное соотношение между этими металлами складывалось стихийно, под влиянием рыночных факторов. В конце 18 - начале 19 вв. на смену системе параллельной валюты пришла система двойной валюты, при которой государство в законодательном порядке устанавливало обязательное соотношение между золотом и Серебром. Однако эта система оказалась чрезвычайно неустойчивой, так как в условиях стихийного действия закона стоимости неизбежно возникало несоответствие между рыночными и фиксированными стоимостями золота и Серебра. В конце 19 века стоимость Серебра резко снизилась вследствие совершенствования способов его добычи из полиметаллических руд (в 70-80-е годы 19 века отношение стоимости золота к Серебру составляло 1:15 - 1:16, в начале 20 века уже 1:38 - 1:39). Рост мировой добычи золота ускорил процесс вытеснения обесценившегося Серебра из обращения. В последней четверти 19 века широкое распространение в мире получил золотой монометаллизм. В большинстве стран мира вытеснение серебряной валюты золотой закончилось в начале 20 века. Серебряная валюта сохранилась примерно до середины 30-х годов 20 века в ряде стран Востока (Китай, Иран, Афганистан и других). С отходом этих стран от серебряного монометаллизма Серебро окончательно утратило значение валютного металла. В промышленно развитых странах Серебро используется только для чеканки разменной монеты.

Рост использования Серебра в технических целях, в зубоврачебном деле, в медицине, а также в производстве ювелирных изделий после 2-й мировой войны 1939-45 годов в условиях отставания добычи Серебра от потребностей рынка вызвал его нехватку. До войны около 75% добываемого Серебра ежегодно использовалось для монетарных целей. В 1950-65 годах этот показатель снизился в среднем до 50%, а в последующие годы продолжал снижаться, составив в 1971 году всего 5% . Многие страны перешли к использованию в качестве монетарного материала медно-никелевых сплавов. Хотя серебряные монеты все еще находятся в обращении, чеканка новых монет из Серебра во многих странах запрещена, а в некоторых значительно уменьшено его содержание в монетах. В США, например, согласно закону о чеканке монет, принятому в 1965, около 90% Серебра, которое шло раньше для чеканки монет, выделено для других целей. Содержание Серебра в 50-центовой монете снижено с 90 до 40%, а монеты достоинством в 10 и 25 центов, содержавшие ранее 90% Серебра, чеканятся без примесей Серебра. Новые монеты из Серебра чеканятся в связи с различными памятными событиями (Олимпийскими играми, юбилеями, мемориалами и т. д.).

Основными потребителями Серебра являются следующие отрасли: производство ювелирных изделий (столового Серебро и анодированных изделий), электротехническая и электронная промышленность, а также кинофотопромышленность.

Серебро было известно человечеству еще 6 тысяч лет назад. Серебро - химический элемент 11 группы Таблицы Менделеева, обозначается Ag (от лат. Argrntum), благородный металл серебристо-белого цвета. Цвет серебра и дал ему название, латинское слово Argentum происходит от греческого argos - блестящий.

Серебро в природе

Серебро является достаточно редким элементом, в литосфере его содержится всего около 0,000001%. Это примерно в тысячу раз меньше, чем содержание меди в земной коре. Несмотря на редкость, серебро чаще встречается в виде самородков, поэтому то оно и было известно с незапамятных времен. Сейчас самородное серебро стало редкостью, основная часть серебра находится в разнообразных минералах, основным из которых является аргентит Ag 2 S. Также большая часть находится в так называемых полиметаллических рудах, в них серебро соседствует с такими металлами как свинец , цинк и медь.

Исторические факты о серебре

Существует легенда, что первые серебряные рудники были открыты в 968 г. никем иным как основателем Священной Римской империи восточно-франкским королём Оттоном I Великим. Легенда гласит, что однажды король послал своего егеря в лес на охоту. Во время охоты тот привязал коня к дереву, который в ожидании хозяина разрыл копытами землю, где оказались необычные светлые камни. Император понял, что это серебро и повелел основать на этом месте рудник. Существуют данные, что этот богатейший рудник разрабатывался еще спустя шесть веков. Об этом свидетельствуют записи немецкого врача и металлурга Георга Агриколы (1494–1555).
Вообще Центральная Европа была очень богата залежами серебряных самородков. В Саксонии в 1477 году был найден один из самых больших самородков в истории массой до 20 тонн! Из серебра добытого в Чехии, близ города Иоахимсталя, были отчеканены миллионы европейских монет. Поэтому их так и называли - «иоахимсталер»; со временем слово укоротилось до «талера». В России это название переиначили на свой лад и у нас они назывались «ефи́мками». Серебряные талеры были самой распространенной европейской монетой в истории, от этого название пошло современное название «доллар».

Чешский богемский Иоахимсталер

Европейские серебряные рудники были настолько богаты, что расход серебра измерялся в тоннах! Но т.к. основная масса европейских серебряных рудников была открыта в XIV-XVI вв., то к настоящему времени они уже истощены.
После открытия Америки оказалось, что этот континент очень богат на серебро. Его залежи были обнаружены в Чили, Перу и Мексике. Аргентина даже получила название по латинскому имени серебра. Тут нужно указать на очень интересный факт. Географические названия химических элементов обычно давались элементу от названия какого-то места, например, гафний назван так от латинского наименования города Копенгаген, в котором он был открыт, географические названия имеют элементы полоний, рутений, галлий и другие. Тут же произошло все с точностью наоборот. Страна была названа по имени химического элемента! Это единственный подобный случай в истории. Самородки серебра находят в Америке и в настоящее время. Один из них был открыт уже в XX веке в Канаде. Этот самородок был длиной 30 метров и глубиной 18 метров! После освоения этого самородка оказалось, что он содержал 20 тонн чистого серебра!

Химические свойства серебра

Серебро - сравнительно мягкий и пластичный металл, из 1 г его можно вытянуть металлическую нить длиной 2 км! Серебро тяжёлый металл, имеет низкую теплопроводность и электропроводность. Температура плавления относительно невысок, всего 962° С. Серебро охотно образует сплавы с другими металлами, которые придают ему новые свойства, например, при добавлении меди получается более твердый сплав - биллон.
При нормальных условиях серебро не подвержено окислению, однако имеет способность поглощать кислород . Твердое серебро при нагреве способно растворить в пять раз больший объем кислорода! В жидком серебре растворяются еще больший объем газа, примерно 20:1.
Иод способен воздействовать на серебро. Особенно благородный металл «боится» иодную настойку и сероводород. В этом и заключается причина потемнения серебра со временем. Источником сероводорода в быту служат испорченные яйца, резина, некоторые полимеры. При реакции сероводорода и серебра, особенно при повышенной влажности, на поверхности металла образуется очень прочная сульфидная плёнка, которая не разрушается при нагреве и воздействии кислот и щелочей. Удалить её можно только механическим способом, например щеткой с нанесенной на неё зубной пастой.
Интересны биохимические свойства серебра. Несмотря на то, что серебро не является биоэлементом оно способно оказывать влияние на жизнедеятельность микробов подавляя работу их ферментов. Это происходит при соединении серебра с аминокислотой, входящей в состав фермента. Поэтому вода в серебряных сосудах не портится, т.к. в ней подавляется жизнедеятельность бактерий.

Применение серебра

Уже с давних времен серебро использовали при изготовлении зеркал, в настоящее время его заменяют алюминием для удешевления производства. Низкое электрическое сопротивление серебра находит применение в электротехнике и электронике, тут из него изготавливают разнообразные контакты и разъемы. В настоящее время серебро практически не используют для производства монет, из него изготавливают только памятные монеты. Большая часть серебра используется в ювелирном деле, при изготовлении столовых приборов. Серебро также широко используется в химической и пищевой промышленности.
Интересно применение иодида серебра. С его помощью можно управлять погодой. Распыляя ничтожные количества иодида серебра с самолета, добиваются образования водяных капель, т.е. проще говоря вызывается дождь. При необходимости можно выполнить и противоположную задачу, когда дождь совершенно не нужен, например, при проведении какого-то очень важного мероприятия. Для этого иодид серебра распыляют за десятки километров до места события, тогда дождь прольется там, а в нужном месте будет сухая погода.
Серебро широко применяется в медицине. Его используют как зубные протезы, в производстве лекарств (колларгол, протаргол, ляпис и др.) и медицинских инструментов.


Влияние серебра на человека

Как мы видели выше, использование небольших доз серебра имеет обеззараживающее и бактерицидное действие. Однако, что полезно в малых дозах, очень часто бывает губительно в больших. Серебро здесь не исключение. Повышение концентрации серебра в организме может вызвать снижение иммунитета, повреждения почек и печени, щитовидной железы и головного мозга. В медицине описаны случаи нарушения психики при отравлении серебром.
Многолетнее поступление серебра в организм малыми дозами приводит к развитию аргирии. Металл постепенно откладывается в тканях органов и придает им зеленоватый или голубоватый цвет, особенно виден этот эффект на коже. При тяжелых случаях аргирии кожа темнеет настолько, что становится похожа на кожу африканцев. Кроме косметического эффекта в остальном аргирия не оказывает какого то ухудшения самочувствия и расстройства работы организма. Но и тут имеется свой плюс, при том, что организм пропитан серебром, ему становятся нипочем любые инфекционные заболевания!


Американец Пол Карсон «Папа Смурф», страдавший аргирией
  • Серебро это простой химический элемент первой группы и пятого периода.
  • Серебро обозначается символом - Ag (от латинского слова - Argentum).
  • Серебро это металл белого или серебристо-белого цвета.
  • Тонкая серебряная фольга в проходящем свете, имеет фиолетовый цвет.
  • Серебро благородный и драгоценный металл.
  • Порядковый номер - 47.
  • Атомная масса - 107,868.
  • Электронная конфигурация: Kr 4d10 5s1.
  • Кристаллическая решётка у серебра - гранецентрированная кубическая.
  • Температура плавления - 961 градусов.
  • Температура кипения - 2210 градусов.
  • Плотность серебра - 10,5 г/см2.
  • С химической точки зрения серебро это инертный и малоактивный металл.
  • В обычно одновалентно.
  • Серебро в нормальных условиях, не растворяет в себе кислород.
  • C течением времени, серебро тускнеет и темнеет, взаимодействуя с содержащимися в воздухе следами серы в составе сероводорода. Реакция потускнения на поверхности серебра, идет с образованием тонкого серого или черного налёта сульфида серебра (Ag2S).
  • Серебро как металл, хорошо проводит тепло и электричество.
  • Обладает малым электрическим сопротивлением.
  • Серебро тяжелее меди и тверже золота.
  • Серебро это мягкий и пластичный металл.
  • По мягкости, серебро занимает промежуточное положение между золотом и медью.
  • Серебро легко обрабатывается, куется, хорошо режется ножом, вытягивается, растягивается, прокатывается в тончайшие пластины и в длинную серебряную проволоку.
  • Серебро легко скручивается и полируется.
  • Серебро обладает превосходной отражающей способностью.
  • В природе встречается чаще в виде минералов и реже в самородном состоянии.
  • Серебро это мягкий металл, поэтому оно в чистом виде (), как правило, не используется, а всегда представлено в виде ювелирных сплавов.
  • Серебро это химический элемент 1 группы и пятого периода периодической системы Д. И. Менделеева. В природе самородное серебро встречается крайне редко, его находят виде так называемых серебряных самородков. Основные запасы серебра находятся в минералах, которые имеют различный химический состав. Основной минерал серебра - аргентит (Аg2S). В химии серебро проявляет лучшую устойчивость там, где степень окисления серебра + 1. В медных и свинцовых рудах, серебро встречается виде примесей, с различными химическими соединениями и элементами.

    Серебро это металл ярко – серебристо – белого цвета. Нет такого металла, который мог бы посоревноваться с белым цветом серебра. Только чистое серебро без примесей, может иметь ярко - белый цвет. Если серебро смешивается с другими металлами, то цвет серебра - меняется. Стандартные ювелирные сплавы серебра с медью, ниже 875 пробы, имеют слегка желтоватый оттенок. Серебреные – медные сплавы, имеют различный спектр цветовых оттенков (начиная от ярко - белого цвета, как у чистого серебра и заканчивается сплавами, с легким желтоватым или слегка красноватым оттенком), в зависимости от процентного соотношения металлов в сплаве.

    На фото ниже видно изображение серебряного кольца 830 пробы. Это кольцо сделано, из серебрено – медного сплава. Кольцо имеет желтоватый оттенок, характерный для сплава 830 пробы серебра с медью.


    Серебро по своей природе это достаточно мягкий и пластичный металл. Он очень легко куется, растягивается, прокатывается и вытягивается. Из серебра можно изготавливать тончайшие пластинки или очень тонкую серебряную проволоку. Серебро настолько мягкий металл, что его можно резать даже ножом. Поэтому ювелиры очень редко используют чистое серебро в ювелирном деле. Кольца, изготовленные из чистого серебра при рукопожатии, могут иногда просто деформироваться. А, вот сплавы различных металлов с серебром используются чаще. Серебро в сплаве с другими металлами, приобретает более твердые свойства. Самый распространенный стандартный сплав серебра с медью, который пользуется мировой славой, это сплав стерлингового серебра 925 пробы. В основном все ювелирные изделия изготавливают из сплава стерлинговой пробы. 925 пробу серебра принято считать мировым серебряным стандартом.

    Из всех металлов серебро лучше всех проводит тепло и электричество. Серебро имеет относительно низкую температуру плавления – 961 градусов. Серебро это инертный, красивый, благородный, химически малоактивный металл. Он химически устойчив по отношению к воде и кислороду.

    Серебро чернеет на воздухе, от присутствия в нем следов серы в составе сероводорода (Н2S). Черный налет на серебре, в виде тонкой пленки, представляет собой - черный (Аg2S).

    Реакция чернения серебра выглядит вот так:

    4Аg + 2Н2S + О2 = 2Аg2S + 2Н2О

    Серебро не вступает в химическую реакцию с соляной и разбавленной серной кислотой. Но реагирует с кислородосодержащей азотной и концентрированной серной кислотой.

    Реакция взаимодействия серебра с концентрированной серной кислотой выглядит вот так:

    Аg + 2HNO3 = АgNO3 + NО2 + Н2О


    В результате реакции, металлическое серебро растворяется в азотной кислоте и образуется - или (АgNO3), двуокись азота (NО2) и вода (Н2О).

    Серебро используется для нанесения покрытий на различные металлы. При этом меняются не только эстетические свойства металлов, но и их физические характеристики. Они приобретают повышенную электропроводность и коррозийную стойкость. Из–за мягкости чистое серебро в ювелирном деле, как правило, не применяется. Чаще всего его используют в сплаве с другими металлами, например с медью.

    Из чистого серебра изготавливают: серебряные слитки, серебряные монеты и мелкие детали или части к ювелирным изделиям. Сплав серебра с никелем, применяют для изготовления серебряно-никелевых аккумуляторов.


    Практическое значение имеет не только металлическое серебро, но и соли этого металла. Например, нитрат серебра (АgNО3) широко применяется в производстве фотоматериалов, в медицине ( или ), гальванотехнике и для изготовления зеркал. Нитрат серебра или азотнокислое серебро, именуемое еще как медицинский ляпис, применяется в медицине для лечения различных болезней (язв, эрозий, бородавок, папиллом, мелких ран, угрей).

    Нитрат серебра в связи с органическими веществами (шерсть, кожа), восстанавливается до металлического серебра. Это свойства нитрата серебра используют для изготовления несмываемых чернил.

    Все химические соединения серебра и их растворы, следует хранить в темных стеклянных банках.

    ОПРЕДЕЛЕНИЕ

    Серебро - сорок седьмой элемент Периодической таблицы. Обозначение - Ag от латинского «argentum». Расположен в пятом периоде, IB группе. Относится к металлам. Заряд ядра равен 47.

    Серебро распространено в природе значительно меньше, чем, например, медь; содержание его в земной коре составляет 10 -5 % (масс.). В некоторых местах (например, в Канаде) серебро встречается в самородном состоянии, но большую часть серебра из его соединений. Самой важной серебряной рудой является серебряный блеск, или агрентит, Ag 2 S.

    В качестве примеси серебро присутствует почти во всех медных и особенно свинцовых рудах. Из этих руд получают около 80% всего добываемого серебра.

    Чистое серебро - очень мягкий, тягучий металл (рис. 1), оно лучше всех металлов проводит теплоту и электрический ток.

    Серебро - малоактивный металл. В атмосфере воздуха оно не окисляется ни при комнатных температурах, ни при нагревании. Часто наблюдаемое почернение серебряных предметов - результат образования на поверхности черного сульфида серебра Ag 2 S.

    Рис. 1. Серебро. Внешний вид.

    Атомная и молекулярная масса серебра

    ОПРЕДЕЛЕНИЕ

    Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

    Поскольку в свободном состоянии серебро существует в виде одноатомных молекул Ag, значения его атомной и молекулярной масс совпадают. Они равны 107,8682.

    Изотопы серебра

    Известно, что в природе серебро может находиться в виде двух стабильных изотопов 107 Ag и 109 Ag. Их массовые числа равны 107 и 109 соответственно. Ядро атома изотопа серебра 107 Ag содержит сорок семь протонов и шестьдесят нейтронов, а изотопа 109 Ag - такое число протонов и шестьдесят два нейтрона.

    Существуют искусственные нестабильные изотопы серебра с массовыми числами от 93-х до 130-ти, а также тридцать шесть изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 104 Ag с периодом полураспада равным 69,2 минуты.

    Ионы серебра

    На внешнем энергетическом уровне атома серебра имеется один электрон, который является валентным:

    1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 9 5s 2 .

    В результате химического взаимодействия серебро отдает свой валентный электрон, т.е. является его донором, и превращается в положительно заряженный ион:

    Ag 0 -1e → Ag + ;

    Ag 0 -2e → Ag 2+ .

    Молекула и атом серебра

    В свободном состоянии серебро существует в виде одноатомных молекул Ag. Приведем некоторые свойства, характеризующие атом и молекулу серебра:

    Сплавы серебра

    На практике чистое серебро вследствие мягкости почти не применяется: обычно его сплавляют с большим или меньшим количеством меди. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, лабораторной посуды.

    Примеры решения задач

    ПРИМЕР 1

    ПРИМЕР 2

    Задание При растворении 3 г сплава меди и серебра в концентрированной азотной кислоте получили 7,34 г смеси нитратов. Определите массовые доли металлов в сплаве.
    Решение Запишем уравнения реакций взаимодействия металлов, представляющих собой сплав (медь и серебро), в концентрированной азотной кислоте:

    Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O (1);

    Ag + 2HNO 3 = AgNO 3 + NO 2 + H 2 O (2).

    В результате реакции образуется смесь, состоящая из нитрата серебра и нитрата меди (II). Пусть количество вещества меди в сплаве составляет х моль, а количество вещества серебра - у моль. Тогда массы этих металлов будут равны (молярная масса меди 64 г/моль, серебра - 108 г/моль):

    m (Cu) = n (Cu) × M (Cu);

    m (Cu)= x × 64 = 64x.

    m (Ag) = n (Ag) × M (Ag);

    m (Ag)= x × 108 = 108y.

    Согласно условию задачи, масса сплава равна 3 г, т.е.:

    m (Cu) + m (Ag) = 3;

    64х + 108у = 3.

    По уравнению (1) n(Cu) : n(Cu(NO 3) 2) = 1:1, значит n(Cu(NO 3) 2) = n(Cu) =х. Тогда масса нитрата меди (II) составляет (молярная масса равна 188 г/моль) 188х.

    Согласно уравнению (2), n(Ag) : n(AgNO 3) = 1:1, значит n(AgNO 3) = n(Ag) =y. Тогда масса нитрата серебра составляет (молярная масса равна 170 г/моль) 170y.

    По условию задачи масса смеси нитратов равна 7,34 г:

    m (Cu(NO 3) 2) + m (AgNO 3) =7,34 ;

    188 х + 170 у = 7,34.

    Получили систему уравнений с двумя неизвестными:

    Выразим из первого уравнения х и подставим это значение во второе уравнение, т.е. решим систему методом подстановки.

    Значит количество вещества серебра равно 0,01 моль. Тогда, масса серебра в сплаве равна:

    m (Ag) = n (Ag) × M (Ag) = 0,01 × 108 = 1,08г.

    Не вычисляя x можно найти массу меди в сплаве:

    m (Cu) = m alloy - m (Ag) = 3 - 1,08 = 1,92 г.

    Определим массовые доли металлов в смеси:

    ω(Me)= m(Me) / m alloy × 100%;

    ω (Cu)= 1,92 / 3 × 100% = 64%;

    ω (Ag)= 1,08 / 2 × 100% = 36%.

    Ответ Массовая доля меди в сплаве равна 64%, серебра - 36%.

    Что еще почитать